update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
model-index:
|
10 |
+
- name: distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.0183
|
22 |
+
- Accuracy: 0.6218
|
23 |
+
- F1: 0.6262
|
24 |
+
- Precision: 0.6318
|
25 |
+
- Recall: 0.6218
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0001
|
45 |
+
- train_batch_size: 64
|
46 |
+
- eval_batch_size: 64
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
56 |
+
| 1.0456 | 1.0 | 9 | 0.9718 | 0.4958 | 0.4197 | 0.6526 | 0.4958 |
|
57 |
+
| 0.9042 | 2.0 | 18 | 0.8920 | 0.5882 | 0.5769 | 0.5784 | 0.5882 |
|
58 |
+
| 0.7923 | 3.0 | 27 | 0.8427 | 0.6134 | 0.5861 | 0.5935 | 0.6134 |
|
59 |
+
| 0.7544 | 4.0 | 36 | 0.8400 | 0.6387 | 0.6234 | 0.6344 | 0.6387 |
|
60 |
+
| 0.6675 | 5.0 | 45 | 0.8410 | 0.6303 | 0.6095 | 0.6184 | 0.6303 |
|
61 |
+
| 0.6091 | 6.0 | 54 | 0.9095 | 0.6050 | 0.6041 | 0.6396 | 0.6050 |
|
62 |
+
| 0.6279 | 7.0 | 63 | 0.8596 | 0.6723 | 0.6692 | 0.6725 | 0.6723 |
|
63 |
+
| 0.4968 | 8.0 | 72 | 0.8725 | 0.6303 | 0.6274 | 0.6253 | 0.6303 |
|
64 |
+
| 0.4459 | 9.0 | 81 | 0.9120 | 0.6387 | 0.6395 | 0.6426 | 0.6387 |
|
65 |
+
| 0.4122 | 10.0 | 90 | 0.9478 | 0.6303 | 0.6262 | 0.6248 | 0.6303 |
|
66 |
+
| 0.3244 | 11.0 | 99 | 0.9746 | 0.6387 | 0.6375 | 0.6381 | 0.6387 |
|
67 |
+
| 0.3535 | 12.0 | 108 | 1.0183 | 0.6218 | 0.6262 | 0.6318 | 0.6218 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.20.1
|
73 |
+
- Pytorch 1.12.0+cu113
|
74 |
+
- Datasets 2.4.0
|
75 |
+
- Tokenizers 0.12.1
|