|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented |
|
|
|
This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5908 |
|
- Accuracy: 0.8653 |
|
- F1: 0.8656 |
|
- Precision: 0.8665 |
|
- Recall: 0.8653 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.9172 | 1.0 | 69 | 0.5124 | 0.8246 | 0.8220 | 0.8271 | 0.8246 | |
|
| 0.4709 | 2.0 | 138 | 0.4279 | 0.8528 | 0.8505 | 0.8588 | 0.8528 | |
|
| 0.3194 | 3.0 | 207 | 0.3770 | 0.8737 | 0.8727 | 0.8740 | 0.8737 | |
|
| 0.2459 | 4.0 | 276 | 0.3951 | 0.8685 | 0.8682 | 0.8692 | 0.8685 | |
|
| 0.1824 | 5.0 | 345 | 0.4005 | 0.8831 | 0.8834 | 0.8841 | 0.8831 | |
|
| 0.1515 | 6.0 | 414 | 0.4356 | 0.8800 | 0.8797 | 0.8801 | 0.8800 | |
|
| 0.1274 | 7.0 | 483 | 0.4642 | 0.8727 | 0.8726 | 0.8731 | 0.8727 | |
|
| 0.0833 | 8.0 | 552 | 0.5226 | 0.8633 | 0.8627 | 0.8631 | 0.8633 | |
|
| 0.073 | 9.0 | 621 | 0.5327 | 0.8695 | 0.8686 | 0.8692 | 0.8695 | |
|
| 0.0575 | 10.0 | 690 | 0.5908 | 0.8653 | 0.8656 | 0.8665 | 0.8653 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.3 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|