vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0975
  • Accuracy: {'accuracy': 0.9566563467492261}
  • F1: {'f1': 0.9461566578410928}
  • Precision: {'precision': 0.9423611549883112}
  • Recall: {'recall': 0.9539001371299508}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.5913 0.9907 80 1.5129 {'accuracy': 0.7461300309597523} {'f1': 0.4885568839223056} {'precision': 0.4547963454156366} {'recall': 0.5477280156914024}
0.7749 1.9938 161 0.6719 {'accuracy': 0.9009287925696594} {'f1': 0.6806448452120003} {'precision': 0.7905629458261038} {'recall': 0.7018633540372671}
0.5529 2.9969 242 0.3765 {'accuracy': 0.9318885448916409} {'f1': 0.7729713140316855} {'precision': 0.8042461260433723} {'recall': 0.7677395068699416}
0.3601 4.0 323 0.3341 {'accuracy': 0.9164086687306502} {'f1': 0.9093567346926615} {'precision': 0.915458654820357} {'recall': 0.9270074301130202}
0.3851 4.9907 403 0.2551 {'accuracy': 0.934984520123839} {'f1': 0.926734220728561} {'precision': 0.9242424242424241} {'recall': 0.9466851299149436}
0.2516 5.9938 484 0.1777 {'accuracy': 0.9566563467492261} {'f1': 0.9489876384049758} {'precision': 0.9485110663983903} {'recall': 0.9513860880320507}
0.3202 6.9969 565 0.1609 {'accuracy': 0.9535603715170279} {'f1': 0.9443998949860868} {'precision': 0.940001409828996} {'recall': 0.9518387064970916}
0.1857 8.0 646 0.1253 {'accuracy': 0.9752321981424149} {'f1': 0.9704532058943071} {'precision': 0.9726055258065137} {'recall': 0.9685497387360742}
0.1644 8.9907 726 0.1459 {'accuracy': 0.9628482972136223} {'f1': 0.9542014027428277} {'precision': 0.9523602484472049} {'recall': 0.9575972681562742}
0.2962 9.9938 807 0.1678 {'accuracy': 0.9411764705882353} {'f1': 0.9353845975481633} {'precision': 0.9327564716246771} {'recall': 0.9513233488388769}
0.2872 10.9969 888 0.1710 {'accuracy': 0.9318885448916409} {'f1': 0.9062805146820121} {'precision': 0.9236623237302658} {'recall': 0.9092948114687246}
0.2152 12.0 969 0.1278 {'accuracy': 0.9659442724458205} {'f1': 0.9592268907563025} {'precision': 0.9600795718006697} {'recall': 0.9590268254864528}
0.2789 12.9907 1049 0.1574 {'accuracy': 0.9473684210526315} {'f1': 0.9401668121351615} {'precision': 0.9386473340716037} {'recall': 0.9479712833750101}
0.0852 13.9938 1130 0.1197 {'accuracy': 0.9628482972136223} {'f1': 0.9543105052140121} {'precision': 0.9504212454212454} {'recall': 0.9594794439514935}
0.1408 14.9969 1211 0.0921 {'accuracy': 0.9690402476780186} {'f1': 0.9595474426584376} {'precision': 0.9564392324093817} {'recall': 0.9638084482804979}
0.1505 16.0 1292 0.0999 {'accuracy': 0.9566563467492261} {'f1': 0.947061703879608} {'precision': 0.9442258268685393} {'recall': 0.953062120763984}
0.0824 16.9907 1372 0.1027 {'accuracy': 0.9597523219814241} {'f1': 0.9507999691104512} {'precision': 0.9465755000825951} {'recall': 0.9603936436234574}
0.1285 17.9938 1453 0.1084 {'accuracy': 0.9473684210526315} {'f1': 0.9384258178429205} {'precision': 0.9349180559553895} {'recall': 0.9514264203705197}
0.1324 18.9969 1534 0.1069 {'accuracy': 0.9628482972136223} {'f1': 0.9542723501653} {'precision': 0.9523602484472049} {'recall': 0.9575972681562744}
0.1132 20.0 1615 0.0916 {'accuracy': 0.9566563467492261} {'f1': 0.9461584792019574} {'precision': 0.941292743433966} {'recall': 0.9548412250275603}
0.1222 20.9907 1695 0.1144 {'accuracy': 0.9535603715170279} {'f1': 0.9435095063666493} {'precision': 0.9403516555363565} {'recall': 0.9507945470678391}
0.0937 21.9938 1776 0.1278 {'accuracy': 0.9504643962848297} {'f1': 0.9421323702425201} {'precision': 0.9393214628508746} {'recall': 0.9519148898030886}
0.0806 22.9969 1857 0.0985 {'accuracy': 0.9597523219814241} {'f1': 0.9496711025800274} {'precision': 0.9460811144381124} {'recall': 0.9561677108260959}
0.0916 24.0 1938 0.1051 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}
0.1396 24.9907 2018 0.1085 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}
0.0688 25.9938 2099 0.1062 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}
0.0807 26.9969 2180 0.1021 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}
0.1431 28.0 2261 0.0979 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}
0.092 28.9907 2341 0.0970 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}
0.0881 29.7214 2400 0.0975 {'accuracy': 0.9566563467492261} {'f1': 0.9461566578410928} {'precision': 0.9423611549883112} {'recall': 0.9539001371299508}

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mmomm25/vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs

Finetuned
(1775)
this model

Evaluation results