vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0975
- Accuracy: {'accuracy': 0.9566563467492261}
- F1: {'f1': 0.9461566578410928}
- Precision: {'precision': 0.9423611549883112}
- Recall: {'recall': 0.9539001371299508}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.5913 | 0.9907 | 80 | 1.5129 | {'accuracy': 0.7461300309597523} | {'f1': 0.4885568839223056} | {'precision': 0.4547963454156366} | {'recall': 0.5477280156914024} |
0.7749 | 1.9938 | 161 | 0.6719 | {'accuracy': 0.9009287925696594} | {'f1': 0.6806448452120003} | {'precision': 0.7905629458261038} | {'recall': 0.7018633540372671} |
0.5529 | 2.9969 | 242 | 0.3765 | {'accuracy': 0.9318885448916409} | {'f1': 0.7729713140316855} | {'precision': 0.8042461260433723} | {'recall': 0.7677395068699416} |
0.3601 | 4.0 | 323 | 0.3341 | {'accuracy': 0.9164086687306502} | {'f1': 0.9093567346926615} | {'precision': 0.915458654820357} | {'recall': 0.9270074301130202} |
0.3851 | 4.9907 | 403 | 0.2551 | {'accuracy': 0.934984520123839} | {'f1': 0.926734220728561} | {'precision': 0.9242424242424241} | {'recall': 0.9466851299149436} |
0.2516 | 5.9938 | 484 | 0.1777 | {'accuracy': 0.9566563467492261} | {'f1': 0.9489876384049758} | {'precision': 0.9485110663983903} | {'recall': 0.9513860880320507} |
0.3202 | 6.9969 | 565 | 0.1609 | {'accuracy': 0.9535603715170279} | {'f1': 0.9443998949860868} | {'precision': 0.940001409828996} | {'recall': 0.9518387064970916} |
0.1857 | 8.0 | 646 | 0.1253 | {'accuracy': 0.9752321981424149} | {'f1': 0.9704532058943071} | {'precision': 0.9726055258065137} | {'recall': 0.9685497387360742} |
0.1644 | 8.9907 | 726 | 0.1459 | {'accuracy': 0.9628482972136223} | {'f1': 0.9542014027428277} | {'precision': 0.9523602484472049} | {'recall': 0.9575972681562742} |
0.2962 | 9.9938 | 807 | 0.1678 | {'accuracy': 0.9411764705882353} | {'f1': 0.9353845975481633} | {'precision': 0.9327564716246771} | {'recall': 0.9513233488388769} |
0.2872 | 10.9969 | 888 | 0.1710 | {'accuracy': 0.9318885448916409} | {'f1': 0.9062805146820121} | {'precision': 0.9236623237302658} | {'recall': 0.9092948114687246} |
0.2152 | 12.0 | 969 | 0.1278 | {'accuracy': 0.9659442724458205} | {'f1': 0.9592268907563025} | {'precision': 0.9600795718006697} | {'recall': 0.9590268254864528} |
0.2789 | 12.9907 | 1049 | 0.1574 | {'accuracy': 0.9473684210526315} | {'f1': 0.9401668121351615} | {'precision': 0.9386473340716037} | {'recall': 0.9479712833750101} |
0.0852 | 13.9938 | 1130 | 0.1197 | {'accuracy': 0.9628482972136223} | {'f1': 0.9543105052140121} | {'precision': 0.9504212454212454} | {'recall': 0.9594794439514935} |
0.1408 | 14.9969 | 1211 | 0.0921 | {'accuracy': 0.9690402476780186} | {'f1': 0.9595474426584376} | {'precision': 0.9564392324093817} | {'recall': 0.9638084482804979} |
0.1505 | 16.0 | 1292 | 0.0999 | {'accuracy': 0.9566563467492261} | {'f1': 0.947061703879608} | {'precision': 0.9442258268685393} | {'recall': 0.953062120763984} |
0.0824 | 16.9907 | 1372 | 0.1027 | {'accuracy': 0.9597523219814241} | {'f1': 0.9507999691104512} | {'precision': 0.9465755000825951} | {'recall': 0.9603936436234574} |
0.1285 | 17.9938 | 1453 | 0.1084 | {'accuracy': 0.9473684210526315} | {'f1': 0.9384258178429205} | {'precision': 0.9349180559553895} | {'recall': 0.9514264203705197} |
0.1324 | 18.9969 | 1534 | 0.1069 | {'accuracy': 0.9628482972136223} | {'f1': 0.9542723501653} | {'precision': 0.9523602484472049} | {'recall': 0.9575972681562744} |
0.1132 | 20.0 | 1615 | 0.0916 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461584792019574} | {'precision': 0.941292743433966} | {'recall': 0.9548412250275603} |
0.1222 | 20.9907 | 1695 | 0.1144 | {'accuracy': 0.9535603715170279} | {'f1': 0.9435095063666493} | {'precision': 0.9403516555363565} | {'recall': 0.9507945470678391} |
0.0937 | 21.9938 | 1776 | 0.1278 | {'accuracy': 0.9504643962848297} | {'f1': 0.9421323702425201} | {'precision': 0.9393214628508746} | {'recall': 0.9519148898030886} |
0.0806 | 22.9969 | 1857 | 0.0985 | {'accuracy': 0.9597523219814241} | {'f1': 0.9496711025800274} | {'precision': 0.9460811144381124} | {'recall': 0.9561677108260959} |
0.0916 | 24.0 | 1938 | 0.1051 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
0.1396 | 24.9907 | 2018 | 0.1085 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
0.0688 | 25.9938 | 2099 | 0.1062 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
0.0807 | 26.9969 | 2180 | 0.1021 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
0.1431 | 28.0 | 2261 | 0.0979 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
0.092 | 28.9907 | 2341 | 0.0970 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
0.0881 | 29.7214 | 2400 | 0.0975 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 11
Model tree for mmomm25/vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefolderself-reported[object Object]
- F1 on imagefolderself-reported[object Object]
- Precision on imagefolderself-reported[object Object]
- Recall on imagefolderself-reported[object Object]