mmomm25 commited on
Commit
d5f80f8
·
verified ·
1 Parent(s): 65d59d9

Model save

Browse files
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value:
29
+ accuracy: 0.9566563467492261
30
+ - name: F1
31
+ type: f1
32
+ value:
33
+ f1: 0.9461566578410928
34
+ - name: Precision
35
+ type: precision
36
+ value:
37
+ precision: 0.9423611549883112
38
+ - name: Recall
39
+ type: recall
40
+ value:
41
+ recall: 0.9539001371299508
42
+ ---
43
+
44
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
+ should probably proofread and complete it, then remove this comment. -->
46
+
47
+ # vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochs
48
+
49
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
50
+ It achieves the following results on the evaluation set:
51
+ - Loss: 0.0975
52
+ - Accuracy: {'accuracy': 0.9566563467492261}
53
+ - F1: {'f1': 0.9461566578410928}
54
+ - Precision: {'precision': 0.9423611549883112}
55
+ - Recall: {'recall': 0.9539001371299508}
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 5e-05
75
+ - train_batch_size: 4
76
+ - eval_batch_size: 4
77
+ - seed: 42
78
+ - gradient_accumulation_steps: 4
79
+ - total_train_batch_size: 16
80
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
81
+ - lr_scheduler_type: linear
82
+ - lr_scheduler_warmup_ratio: 0.1
83
+ - num_epochs: 30
84
+
85
+ ### Training results
86
+
87
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
88
+ |:-------------:|:-------:|:----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
89
+ | 1.5913 | 0.9907 | 80 | 1.5129 | {'accuracy': 0.7461300309597523} | {'f1': 0.4885568839223056} | {'precision': 0.4547963454156366} | {'recall': 0.5477280156914024} |
90
+ | 0.7749 | 1.9938 | 161 | 0.6719 | {'accuracy': 0.9009287925696594} | {'f1': 0.6806448452120003} | {'precision': 0.7905629458261038} | {'recall': 0.7018633540372671} |
91
+ | 0.5529 | 2.9969 | 242 | 0.3765 | {'accuracy': 0.9318885448916409} | {'f1': 0.7729713140316855} | {'precision': 0.8042461260433723} | {'recall': 0.7677395068699416} |
92
+ | 0.3601 | 4.0 | 323 | 0.3341 | {'accuracy': 0.9164086687306502} | {'f1': 0.9093567346926615} | {'precision': 0.915458654820357} | {'recall': 0.9270074301130202} |
93
+ | 0.3851 | 4.9907 | 403 | 0.2551 | {'accuracy': 0.934984520123839} | {'f1': 0.926734220728561} | {'precision': 0.9242424242424241} | {'recall': 0.9466851299149436} |
94
+ | 0.2516 | 5.9938 | 484 | 0.1777 | {'accuracy': 0.9566563467492261} | {'f1': 0.9489876384049758} | {'precision': 0.9485110663983903} | {'recall': 0.9513860880320507} |
95
+ | 0.3202 | 6.9969 | 565 | 0.1609 | {'accuracy': 0.9535603715170279} | {'f1': 0.9443998949860868} | {'precision': 0.940001409828996} | {'recall': 0.9518387064970916} |
96
+ | 0.1857 | 8.0 | 646 | 0.1253 | {'accuracy': 0.9752321981424149} | {'f1': 0.9704532058943071} | {'precision': 0.9726055258065137} | {'recall': 0.9685497387360742} |
97
+ | 0.1644 | 8.9907 | 726 | 0.1459 | {'accuracy': 0.9628482972136223} | {'f1': 0.9542014027428277} | {'precision': 0.9523602484472049} | {'recall': 0.9575972681562742} |
98
+ | 0.2962 | 9.9938 | 807 | 0.1678 | {'accuracy': 0.9411764705882353} | {'f1': 0.9353845975481633} | {'precision': 0.9327564716246771} | {'recall': 0.9513233488388769} |
99
+ | 0.2872 | 10.9969 | 888 | 0.1710 | {'accuracy': 0.9318885448916409} | {'f1': 0.9062805146820121} | {'precision': 0.9236623237302658} | {'recall': 0.9092948114687246} |
100
+ | 0.2152 | 12.0 | 969 | 0.1278 | {'accuracy': 0.9659442724458205} | {'f1': 0.9592268907563025} | {'precision': 0.9600795718006697} | {'recall': 0.9590268254864528} |
101
+ | 0.2789 | 12.9907 | 1049 | 0.1574 | {'accuracy': 0.9473684210526315} | {'f1': 0.9401668121351615} | {'precision': 0.9386473340716037} | {'recall': 0.9479712833750101} |
102
+ | 0.0852 | 13.9938 | 1130 | 0.1197 | {'accuracy': 0.9628482972136223} | {'f1': 0.9543105052140121} | {'precision': 0.9504212454212454} | {'recall': 0.9594794439514935} |
103
+ | 0.1408 | 14.9969 | 1211 | 0.0921 | {'accuracy': 0.9690402476780186} | {'f1': 0.9595474426584376} | {'precision': 0.9564392324093817} | {'recall': 0.9638084482804979} |
104
+ | 0.1505 | 16.0 | 1292 | 0.0999 | {'accuracy': 0.9566563467492261} | {'f1': 0.947061703879608} | {'precision': 0.9442258268685393} | {'recall': 0.953062120763984} |
105
+ | 0.0824 | 16.9907 | 1372 | 0.1027 | {'accuracy': 0.9597523219814241} | {'f1': 0.9507999691104512} | {'precision': 0.9465755000825951} | {'recall': 0.9603936436234574} |
106
+ | 0.1285 | 17.9938 | 1453 | 0.1084 | {'accuracy': 0.9473684210526315} | {'f1': 0.9384258178429205} | {'precision': 0.9349180559553895} | {'recall': 0.9514264203705197} |
107
+ | 0.1324 | 18.9969 | 1534 | 0.1069 | {'accuracy': 0.9628482972136223} | {'f1': 0.9542723501653} | {'precision': 0.9523602484472049} | {'recall': 0.9575972681562744} |
108
+ | 0.1132 | 20.0 | 1615 | 0.0916 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461584792019574} | {'precision': 0.941292743433966} | {'recall': 0.9548412250275603} |
109
+ | 0.1222 | 20.9907 | 1695 | 0.1144 | {'accuracy': 0.9535603715170279} | {'f1': 0.9435095063666493} | {'precision': 0.9403516555363565} | {'recall': 0.9507945470678391} |
110
+ | 0.0937 | 21.9938 | 1776 | 0.1278 | {'accuracy': 0.9504643962848297} | {'f1': 0.9421323702425201} | {'precision': 0.9393214628508746} | {'recall': 0.9519148898030886} |
111
+ | 0.0806 | 22.9969 | 1857 | 0.0985 | {'accuracy': 0.9597523219814241} | {'f1': 0.9496711025800274} | {'precision': 0.9460811144381124} | {'recall': 0.9561677108260959} |
112
+ | 0.0916 | 24.0 | 1938 | 0.1051 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
113
+ | 0.1396 | 24.9907 | 2018 | 0.1085 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
114
+ | 0.0688 | 25.9938 | 2099 | 0.1062 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
115
+ | 0.0807 | 26.9969 | 2180 | 0.1021 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
116
+ | 0.1431 | 28.0 | 2261 | 0.0979 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
117
+ | 0.092 | 28.9907 | 2341 | 0.0970 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
118
+ | 0.0881 | 29.7214 | 2400 | 0.0975 | {'accuracy': 0.9566563467492261} | {'f1': 0.9461566578410928} | {'precision': 0.9423611549883112} | {'recall': 0.9539001371299508} |
119
+
120
+
121
+ ### Framework versions
122
+
123
+ - Transformers 4.43.3
124
+ - Pytorch 2.3.1
125
+ - Datasets 2.20.0
126
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:00af360f82abc9b3e016ca2b4bf5244a2f02de732d33d2c123f95f96bdf988dc
3
  size 343239356
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c92d9338a193b788a492ee5e8769f8a7d2f2af28653a7e8b861f50c57241cfd
3
  size 343239356
runs/Oct01_10-46-36_CARL-Mechanical-PC/events.out.tfevents.1727750835.CARL-Mechanical-PC.3560.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e3d09d02a1763c896ece8f856105e66a7863884147822a0f017f16cf454eaff6
3
- size 63786
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d8c5df4a1db9ccc231055004edf985a6ffe6c8728d6414405fbccb961f4e09f
3
+ size 64411