María Navas Loro
update model card README.md
2cc7a57
|
raw
history blame
2.37 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-finetuned-WebClassification-v2-smalllinguaENv2
    results: []

roberta-finetuned-WebClassification-v2-smalllinguaENv2

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7384
  • Accuracy: 0.55
  • F1: 0.55
  • Precision: 0.55
  • Recall: 0.55

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 20 2.9187 0.075 0.075 0.075 0.075
No log 2.0 40 2.8030 0.15 0.15 0.15 0.15
No log 3.0 60 2.6273 0.325 0.325 0.325 0.325
No log 4.0 80 2.3371 0.45 0.45 0.45 0.45
No log 5.0 100 2.1233 0.425 0.425 0.425 0.425
No log 6.0 120 1.9737 0.525 0.525 0.525 0.525
No log 7.0 140 1.8962 0.475 0.4750 0.475 0.475
No log 8.0 160 1.8013 0.525 0.525 0.525 0.525
No log 9.0 180 1.7384 0.55 0.55 0.55 0.55
No log 10.0 200 1.7237 0.55 0.55 0.55 0.55

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3