María Navas Loro
update model card README.md
fe1475c
|
raw
history blame
2.39 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-finetuned-WebClassification-v2-smalllinguaMultiv2
    results: []

roberta-finetuned-WebClassification-v2-smalllinguaMultiv2

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0950
  • Accuracy: 0.7742
  • F1: 0.7742
  • Precision: 0.7742
  • Recall: 0.7742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 48 2.8245 0.2796 0.2796 0.2796 0.2796
No log 2.0 96 2.2338 0.4301 0.4301 0.4301 0.4301
No log 3.0 144 1.9060 0.5269 0.5269 0.5269 0.5269
No log 4.0 192 1.5349 0.6022 0.6022 0.6022 0.6022
No log 5.0 240 1.4208 0.6882 0.6882 0.6882 0.6882
No log 6.0 288 1.3330 0.7204 0.7204 0.7204 0.7204
No log 7.0 336 1.2037 0.7097 0.7097 0.7097 0.7097
No log 8.0 384 1.1414 0.7419 0.7419 0.7419 0.7419
No log 9.0 432 1.0950 0.7742 0.7742 0.7742 0.7742
No log 10.0 480 1.0883 0.7634 0.7634 0.7634 0.7634

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3