metadata
license: apache-2.0
datasets:
- Murple/ksponspeech
language:
- ko
metrics:
- cer
- wer
pipeline_tag: automatic-speech-recognition
Whisper-Medium-KsponSpeech
The Whisper-medium Model finetunned with KsponSpeech
Model Description
Uses
processor = WhisperProcessor.from_pretrained("openai/whisper-medium", language="ko", task="transcribe")
model = WhisperForConditionalGeneration.from_pretrained('spow12/whisper-medium-zeroth_korean').cuda()
data, _ = librosa.load(wav_path, sr=16000)
input_features = processor(data, sampling_rate=16000, return_tensors="pt").input_features.cuda()
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
Metrics
Metric | result |
---|---|
WER | 3.96 |
CER | 1.71 |