|
--- |
|
license: llama2 |
|
train: false |
|
inference: false |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
This is an experimental <a href="https://github.com/mobiusml/hqq/">HQQ</a> 1-bit quantized (<b>binary weights</b>) <a href="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"> Llama2-7B-chat model </a> using a low-rank adapter to improve the performance (referred to as <a href="https://mobiusml.github.io/1bit_blog/">HQQ+</a>). |
|
|
|
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/636b945ef575d3705149e982/3fOfrg-5WtJwC5cpcVDub.gif) |
|
|
|
Quantizing small models at extreme low-bits is a challenging task. The purpose of this model is to show the community what to expect when fine-tuning such models. |
|
We notice that, 1-bit quantization doesn't work well when applied directly on small models such as the Llama2-7B. However, when fine-tuned, the model's ouput significantly improves. In fact, the 1-bit base model outperforms Quip# 2-bit after fine-tuning on ~2.8K samples. |
|
|
|
Note that the weights here are unsigned 1-bit (0 or 1), <a href="https://arxiv.org/abs/2402.17764">not ternary like the recent 1.58-bit work </a>. This is a more challenging task since we lose the sign of the weights and only fine-tune a small fraction of the parameters (~94MB worth of weights). |
|
The dequantization step can be rewriten as a 1-bit matmul which could potentially require only additions + a very low-rank matmul which is fast to compute. |
|
|
|
This version offloads the meta-data to the CPU, so only the binary weights and the low-rank adapters are stored in the GPU memory. |
|
|
|
## Datasets |
|
The adapter was trained via SFT on random subsets of the following: |
|
|
|
### Base Model |
|
* <a href="https://huggingface.co/datasets/wikitext">wikitext-2-raw-v1</a> (full) |
|
|
|
### Chat Model |
|
* <a href="https://huggingface.co/datasets/timdettmers/openassistant-guana"> timdettmers/openassistant-guanaco </a> (full) |
|
* <a href="https://huggingface.co/datasets/icrosoft/orca-math-word-problems-200k"> microsoft/orca-math-word-problems-200k </a> (25K) |
|
* <a href="https://huggingface.co/datasets/meta-math/MetaMathQA"> meta-math/MetaMathQA </a> (25K) |
|
* <a href="https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized"> HuggingFaceH4/ultrafeedback_binarized </a> (25K - chosen answers only) |
|
|
|
## Performance |
|
| Models | Llama2-7B (fp16)| Llama2-7B (HQQ 1-bit)| Llama2-7B (HQQ+ 1-bit)| Quip# (2-bit)| |
|
|-------------------|------------------|------------------|------------------|------------------| |
|
| Wiki Perpexlity | 5.18 | 9866 | <b>8.53</b> | 8.54 | |
|
| VRAM (GB) | 13.5 | <b>1.76</b> | 1.85 | 2.72 | |
|
| forward time (sec)| <b>0.1<b> | 0.231 | 0.257 | 0.353 | |
|
|
|
| Models | Llama2-7B-chat (fp16)| Llama2-7B-chat (HQQ 1-bit)| Llama2-7B-chat (HQQ+ 1-bit)| |
|
|-------------------|------------------|------------------|------------------| |
|
| ARC (25-shot) | 53.67 | 21.59 | 31.14 | |
|
| HellaSwag (10-shot)| 78.56 | 25.66 | 52.96 | |
|
| MMLU (5-shot) | 48.16 | 25.08 | 26.54 | |
|
| TruthfulQA-MC2 | 45.32 | 47.81 | 43.16 | |
|
| Winogrande (5-shot)| 72.53 | 49.72 | 60.54 | |
|
| GSM8K (5-shot) | 23.12 | 0 | 11 | |
|
| Average | 53.56 | 28.31 | 37.56 | |
|
|
|
## Usage |
|
First, install <a href="https://github.com/mobiusml/hqq/">HQQ</a>: |
|
``` |
|
pip install hqq==0.1.8 |
|
``` |
|
Then you can use the sample code below: |
|
``` Python |
|
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer |
|
|
|
#Load the model |
|
model_id = 'mobiuslabsgmbh/Llama-2-7b-chat-hf_1bitgs8_hqq' |
|
model = HQQModelForCausalLM.from_quantized(model_id, adapter='adapter_v0.1.lora') |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
#Setup Inference Mode |
|
tokenizer.add_bos_token = False |
|
tokenizer.add_eos_token = False |
|
if not tokenizer.pad_token: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
model.config.use_cache = True |
|
model.eval(); |
|
|
|
# Optional: torch compile for faster inference |
|
# model = torch.compile(model) |
|
|
|
#Streaming Inference |
|
import torch, transformers |
|
from threading import Thread |
|
|
|
def chat_processor(chat, max_new_tokens=100, do_sample=True, device='cuda'): |
|
tokenizer.use_default_system_prompt = False |
|
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_params = dict( |
|
tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to(device), |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
pad_token_id=tokenizer.pad_token_id, |
|
top_p=0.90 if do_sample else None, |
|
top_k=50 if do_sample else None, |
|
temperature= 0.6 if do_sample else None, |
|
num_beams=1, |
|
repetition_penalty=1.2, |
|
) |
|
|
|
t = Thread(target=model.generate, kwargs=generate_params) |
|
t.start() |
|
|
|
print("User: ", chat); |
|
print("Assistant: "); |
|
outputs = "" |
|
for text in streamer: |
|
outputs += text |
|
print(text, end="", flush=True) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return outputs |
|
``` |
|
|
|
### Example |
|
``` Python |
|
outputs = chat_processor("What is the solution to x^2 - 1 = 0", max_new_tokens=1000, do_sample=False) |
|
``` |
|
``` |
|
User: What is the solution to x^2 - 1 = 0 |
|
Assistant: |
|
The equation $x^2 - 1 = 0$ can be factored as $(x-1)(x+1) = 0$. |
|
You want to find a value of $x$ that makes this true for all values of $x$. This means that either $x=1$ or $-1$, or $x=-1$. So, there are two solutions: $x=\boxed{1}$ and $x=\boxed{-1}$. The answer is: 1 |
|
``` |
|
|