File size: 5,904 Bytes
3ea237f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c05c6b
 
 
 
3ea237f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c05c6b
3ea237f
 
 
 
 
9c05c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea237f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: mit
base_model: flaubert/flaubert_small_cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bank-transactions-statements-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bank-transactions-statements-classification

This model is a fine-tuned version of [flaubert/flaubert_small_cased](https://huggingface.co/flaubert/flaubert_small_cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0458
- Accuracy: 0.7683
- F1 Macro: 0.7945
- F1 Weighted: 0.7635

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|
| No log        | 0.29  | 50   | 3.6955          | 0.1012   | 0.0238   | 0.0880      |
| No log        | 0.58  | 100  | 3.2965          | 0.2150   | 0.0569   | 0.1598      |
| No log        | 0.87  | 150  | 3.1122          | 0.2530   | 0.0833   | 0.1889      |
| No log        | 1.16  | 200  | 2.6838          | 0.3622   | 0.1800   | 0.3051      |
| No log        | 1.45  | 250  | 2.5128          | 0.3808   | 0.1938   | 0.3139      |
| No log        | 1.74  | 300  | 2.1573          | 0.4913   | 0.3241   | 0.4522      |
| No log        | 2.03  | 350  | 2.0208          | 0.5220   | 0.3910   | 0.4832      |
| No log        | 2.33  | 400  | 2.0454          | 0.5053   | 0.4090   | 0.4613      |
| No log        | 2.62  | 450  | 1.7601          | 0.5599   | 0.4682   | 0.5303      |
| 3.1338        | 2.91  | 500  | 1.6837          | 0.5965   | 0.5489   | 0.5736      |
| 3.1338        | 3.2   | 550  | 1.6337          | 0.5885   | 0.5744   | 0.5609      |
| 3.1338        | 3.49  | 600  | 1.4553          | 0.6491   | 0.6219   | 0.6322      |
| 3.1338        | 3.78  | 650  | 1.4483          | 0.6531   | 0.6441   | 0.6345      |
| 3.1338        | 4.07  | 700  | 1.4108          | 0.6625   | 0.6810   | 0.6522      |
| 3.1338        | 4.36  | 750  | 1.3241          | 0.6924   | 0.6999   | 0.6769      |
| 3.1338        | 4.65  | 800  | 1.3254          | 0.6824   | 0.6960   | 0.6703      |
| 3.1338        | 4.94  | 850  | 1.3349          | 0.6937   | 0.6952   | 0.6759      |
| 3.1338        | 5.23  | 900  | 1.2264          | 0.7057   | 0.7157   | 0.6931      |
| 3.1338        | 5.52  | 950  | 1.3012          | 0.6891   | 0.7061   | 0.6748      |
| 1.6259        | 5.81  | 1000 | 1.2756          | 0.7071   | 0.7224   | 0.6925      |
| 1.6259        | 6.1   | 1050 | 1.1432          | 0.7317   | 0.7440   | 0.7267      |
| 1.6259        | 6.4   | 1100 | 1.2014          | 0.7290   | 0.7434   | 0.7161      |
| 1.6259        | 6.69  | 1150 | 1.1029          | 0.7483   | 0.7656   | 0.7367      |
| 1.6259        | 6.98  | 1200 | 1.1643          | 0.7310   | 0.7470   | 0.7227      |
| 1.6259        | 7.27  | 1250 | 1.1112          | 0.7477   | 0.7561   | 0.7371      |
| 1.6259        | 7.56  | 1300 | 1.1662          | 0.7350   | 0.7668   | 0.7254      |
| 1.6259        | 7.85  | 1350 | 1.0756          | 0.7577   | 0.7823   | 0.7530      |
| 1.6259        | 8.14  | 1400 | 1.1390          | 0.7403   | 0.7657   | 0.7318      |
| 1.6259        | 8.43  | 1450 | 1.1555          | 0.7437   | 0.7637   | 0.7377      |
| 1.092         | 8.72  | 1500 | 1.1086          | 0.7437   | 0.7686   | 0.7384      |
| 1.092         | 9.01  | 1550 | 1.0789          | 0.7510   | 0.7780   | 0.7427      |
| 1.092         | 9.3   | 1600 | 1.0613          | 0.7543   | 0.7823   | 0.7492      |
| 1.092         | 9.59  | 1650 | 1.0750          | 0.7477   | 0.7701   | 0.7382      |
| 1.092         | 9.88  | 1700 | 1.1412          | 0.7423   | 0.7772   | 0.7349      |
| 1.092         | 10.17 | 1750 | 1.0580          | 0.7617   | 0.7918   | 0.7549      |
| 1.092         | 10.47 | 1800 | 1.0667          | 0.7670   | 0.7856   | 0.7580      |
| 1.092         | 10.76 | 1850 | 1.1344          | 0.7403   | 0.7757   | 0.7332      |
| 1.092         | 11.05 | 1900 | 1.0808          | 0.7603   | 0.7944   | 0.7571      |
| 1.092         | 11.34 | 1950 | 1.0367          | 0.7690   | 0.7932   | 0.7655      |
| 0.9029        | 11.63 | 2000 | 1.0921          | 0.7577   | 0.7861   | 0.7504      |
| 0.9029        | 11.92 | 2050 | 1.0833          | 0.7603   | 0.7912   | 0.7541      |
| 0.9029        | 12.21 | 2100 | 1.0523          | 0.7716   | 0.7968   | 0.7662      |
| 0.9029        | 12.5  | 2150 | 1.0467          | 0.7683   | 0.7939   | 0.7614      |
| 0.9029        | 12.79 | 2200 | 1.0515          | 0.7703   | 0.7987   | 0.7667      |
| 0.9029        | 13.08 | 2250 | 1.0604          | 0.7696   | 0.8020   | 0.7654      |
| 0.9029        | 13.37 | 2300 | 1.0900          | 0.7716   | 0.8002   | 0.7663      |
| 0.9029        | 13.66 | 2350 | 1.0348          | 0.7743   | 0.8009   | 0.7686      |
| 0.9029        | 13.95 | 2400 | 1.0495          | 0.7656   | 0.7929   | 0.7610      |
| 0.9029        | 14.24 | 2450 | 1.0411          | 0.7670   | 0.7956   | 0.7624      |
| 0.7924        | 14.53 | 2500 | 1.0458          | 0.7683   | 0.7945   | 0.7635      |
| 0.7924        | 14.83 | 2550 | 1.0401          | 0.7696   | 0.7982   | 0.7649      |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1