|
--- |
|
language: |
|
- ar |
|
|
|
datasets: |
|
- ArSentD-LEV |
|
|
|
tags: |
|
- ArSentD-LEV |
|
|
|
|
|
widget: |
|
- text: "يهدي الله من يشاء" |
|
- text: "الاسلوب قذر وقمامه" |
|
|
|
--- |
|
|
|
# bert-arsentd-lev |
|
Arabic version bert model fine tuned on ArSentD-LEV dataset |
|
|
|
## Data |
|
The model were fine-tuned on ~4000 sentence from twitter multiple dialect and five classes we used 3 out of 5 int the experiment. |
|
|
|
|
|
|
|
## Results |
|
| class | precision | recall | f1-score | Support | |
|
|----------|-----------|--------|----------|---------| |
|
| 0 | 0.8211 | 0.8080 | 0.8145 | 125 | |
|
| 1 | 0.7174 | 0.7857 | 0.7500 | 84 | |
|
| 2 | 0.6867 | 0.6404 | 0.6628 | 89 | |
|
| Accuracy | | | 0.7517 | 298 | |
|
|
|
|
|
## How to use |
|
|
|
You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model_name="mofawzy/bert-arsentd-lev" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=3) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
``` |
|
|