a2c-PandaReachDense-v2 / config.json
moghis's picture
Five commit
af0fd48
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f35f67b84c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f35f699bd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 538952, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684533429431851675, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/rbPxiDvj+gmTg/tHmPP+BwfL1psoM+sm3/v5BCZL/ThxM/cldjP6y12r/aaD6/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuTDIPwjUuj/Esz0/UpSLP0EIQL3/Cxg+MBzav99xTL+7I2o/CBJ4P1qG1L9RcZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+ts/GIO+P6CZOD/JN2Q9tMECvP3lELy0eY8/4HB8vWmygz4WTVI94XiAPMnqFDmybf+/kEJkv9OHEz+kUIs+jT3HPIdy1D1yV2M/rLXav9poPr8IT428B4I2vWRAgLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.7185787 1.4883757 0.72109413]\n [ 1.1209016 -0.06163108 0.25722054]\n [-1.9955351 -0.89164066 0.57629126]\n [ 0.88805306 -1.7086692 -0.7437874 ]]", "desired_goal": "[[ 1.5639869 1.4595957 0.74102426]\n [ 1.0904639 -0.04688287 0.14848326]\n [-1.7039852 -0.79861253 0.9146077 ]\n [ 0.96902514 -1.6603501 -1.2456456 ]]", "observation": "[[ 1.7185787e+00 1.4883757e+00 7.2109413e-01 5.5717263e-02\n -7.9807527e-03 -8.8438960e-03]\n [ 1.1209016e+00 -6.1631083e-02 2.5722054e-01 5.1343046e-02\n 1.5682640e-02 1.4201844e-04]\n [-1.9955351e+00 -8.9164066e-01 5.7629126e-01 2.7209961e-01\n 2.4321342e-02 1.0373407e-01]\n [ 8.8805306e-01 -1.7086692e+00 -7.4378741e-01 -1.7249599e-02\n -4.4557597e-02 -1.5655704e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYhWwvPMO0bwsLE89O5XEPOjnHb1RwJg+3ktivSI9oD1u1zQ+3cURPYDw6r0Kjo4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02149457 -0.02551982 0.05057923]\n [ 0.02399694 -0.03855124 0.29834226]\n [-0.05524813 0.0782416 0.17660305]\n [ 0.03558909 -0.11471653 0.27842742]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.461056, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISWdg5GXN9b+UhpRSlIwBbJRLMowBdJRHQJ3EGnO0LMN1fZQoaAZoCWgPQwi4rS08L9Xxv5SGlFKUaBVLMmgWR0Cdw5ihWYF8dX2UKGgGaAloD0MIm3PwTGiS7r+UhpRSlGgVSzJoFkdAncMSUornT3V9lChoBmgJaA9DCETAIVSpWfi/lIaUUpRoFUsyaBZHQJ3CjW7OE/V1fZQoaAZoCWgPQwgXnSy13m/wv5SGlFKUaBVLMmgWR0CdxmhdMTN/dX2UKGgGaAloD0MInIaowp9h8L+UhpRSlGgVSzJoFkdAncXmelKsdXV9lChoBmgJaA9DCCtoWmJltPW/lIaUUpRoFUsyaBZHQJ3FX/jsD4h1fZQoaAZoCWgPQwhz9zk+WjwBwJSGlFKUaBVLMmgWR0CdxNrtmcvvdX2UKGgGaAloD0MIXjC45o5+9b+UhpRSlGgVSzJoFkdAnci8Oby6MHV9lChoBmgJaA9DCAA6zJcX4OG/lIaUUpRoFUsyaBZHQJ3IOm1pj+d1fZQoaAZoCWgPQwgw8rImFvjzv5SGlFKUaBVLMmgWR0Cdx7QTEit8dX2UKGgGaAloD0MIYJFfP8QG97+UhpRSlGgVSzJoFkdAnccvNzKcNHV9lChoBmgJaA9DCPJ376gx4fK/lIaUUpRoFUsyaBZHQJ3LNFWn0kJ1fZQoaAZoCWgPQwhdixagbbXgv5SGlFKUaBVLMmgWR0CdyrKiwjdIdX2UKGgGaAloD0MI4nMn2H+d0L+UhpRSlGgVSzJoFkdAncoscZLqU3V9lChoBmgJaA9DCOKS407poPi/lIaUUpRoFUsyaBZHQJ3Jp19v0iB1fZQoaAZoCWgPQwiUTE7tDFPwv5SGlFKUaBVLMmgWR0CdzYp/PPcBdX2UKGgGaAloD0MInZ53Y0Fh8r+UhpRSlGgVSzJoFkdAnc0Iouwos3V9lChoBmgJaA9DCA9/TdaoR/K/lIaUUpRoFUsyaBZHQJ3MgnRb8m91fZQoaAZoCWgPQwjaG3xhMlXkv5SGlFKUaBVLMmgWR0Cdy/2K2rn1dX2UKGgGaAloD0MImWa610m9/7+UhpRSlGgVSzJoFkdAnc/mqgh8pnV9lChoBmgJaA9DCNcTXRd+8ALAlIaUUpRoFUsyaBZHQJ3PZPM0P6N1fZQoaAZoCWgPQwiJDKt4I3Ppv5SGlFKUaBVLMmgWR0Cdzt8KohpydX2UKGgGaAloD0MIO2743XRL77+UhpRSlGgVSzJoFkdAnc5ZmRNh3XV9lChoBmgJaA9DCFd2weCaO+a/lIaUUpRoFUsyaBZHQJ3SXHim2st1fZQoaAZoCWgPQwid2EP7WMHpv5SGlFKUaBVLMmgWR0Cd0drYGt6pdX2UKGgGaAloD0MIGmoUksxq5L+UhpRSlGgVSzJoFkdAndFUmplz2nV9lChoBmgJaA9DCH78pUV9UvW/lIaUUpRoFUsyaBZHQJ3Qz7P6bfB1fZQoaAZoCWgPQwijrrX3qSrtv5SGlFKUaBVLMmgWR0Cd1LDu0CzUdX2UKGgGaAloD0MIn1p9dVUg6r+UhpRSlGgVSzJoFkdAndQvKZDzAnV9lChoBmgJaA9DCBAhrpy9c/S/lIaUUpRoFUsyaBZHQJ3TqPaL4vh1fZQoaAZoCWgPQwhnYroQq7/zv5SGlFKUaBVLMmgWR0Cd0yQBPsRhdX2UKGgGaAloD0MIsvZ3tkdv8L+UhpRSlGgVSzJoFkdAndcjy8SPEXV9lChoBmgJaA9DCOP8TShEQOy/lIaUUpRoFUsyaBZHQJ3WopkPMB91fZQoaAZoCWgPQwirlJ7pJcYCwJSGlFKUaBVLMmgWR0Cd1hwpON5udX2UKGgGaAloD0MIyZHOwMhL97+UhpRSlGgVSzJoFkdAndWW65Gz8nV9lChoBmgJaA9DCDI7i96pgOy/lIaUUpRoFUsyaBZHQJ3ZjfQ8fV91fZQoaAZoCWgPQwjlZOJWQQzXv5SGlFKUaBVLMmgWR0Cd2Qw7DEWJdX2UKGgGaAloD0MI3jr/dtkv67+UhpRSlGgVSzJoFkdAndiGD+R5knV9lChoBmgJaA9DCKlKW1zjs+i/lIaUUpRoFUsyaBZHQJ3YAWweNkx1fZQoaAZoCWgPQwjtvI3NjtTnv5SGlFKUaBVLMmgWR0Cd2+szl90BdX2UKGgGaAloD0MI+z2xTpVv6b+UhpRSlGgVSzJoFkdAndtpZbILgHV9lChoBmgJaA9DCBu5bkp5rdS/lIaUUpRoFUsyaBZHQJ3a4wUQCjl1fZQoaAZoCWgPQwjXprG9FrT9v5SGlFKUaBVLMmgWR0Cd2l4Cp3otdX2UKGgGaAloD0MI4zWv6qwW6b+UhpRSlGgVSzJoFkdAnd5cdT5wfnV9lChoBmgJaA9DCDs42JsYkgDAlIaUUpRoFUsyaBZHQJ3d2piqhlF1fZQoaAZoCWgPQwiuEcE4uLT7v5SGlFKUaBVLMmgWR0Cd3VRmbsnidX2UKGgGaAloD0MIGhcOhGQhCMCUhpRSlGgVSzJoFkdAndzPtIClrXV9lChoBmgJaA9DCP8gkiHH1u2/lIaUUpRoFUsyaBZHQJ3gxB9kSVZ1fZQoaAZoCWgPQwhRS3MrhNXkv5SGlFKUaBVLMmgWR0Cd4EMzuWrwdX2UKGgGaAloD0MI0CozpfV38r+UhpRSlGgVSzJoFkdAnd+9ZRsMzHV9lChoBmgJaA9DCOup1VdXBeG/lIaUUpRoFUsyaBZHQJ3fOMR6F/R1fZQoaAZoCWgPQwiK48Cr5Y7wv5SGlFKUaBVLMmgWR0Cd5KIi1RcedX2UKGgGaAloD0MIfjoeM1DZ+b+UhpRSlGgVSzJoFkdAneQiKaXrt3V9lChoBmgJaA9DCHUfgNQmDv6/lIaUUpRoFUsyaBZHQJ3jnhCMPz51fZQoaAZoCWgPQwjswg/Op075v5SGlFKUaBVLMmgWR0Cd4xsQd0aIdX2UKGgGaAloD0MIt7bwvFQs8b+UhpRSlGgVSzJoFkdAneh3Heaa1HV9lChoBmgJaA9DCG1y+KQTifC/lIaUUpRoFUsyaBZHQJ3n+RW912d1fZQoaAZoCWgPQwi4lPPF3ovfv5SGlFKUaBVLMmgWR0Cd53TzND+jdX2UKGgGaAloD0MIJqjhW1i367+UhpRSlGgVSzJoFkdAnebx+F10T3V9lChoBmgJaA9DCIJXy52ZoP2/lIaUUpRoFUsyaBZHQJ3sXX4CZF51fZQoaAZoCWgPQwhX6INlbOj7v5SGlFKUaBVLMmgWR0Cd692alUIcdX2UKGgGaAloD0MIYcQ+ARSj5b+UhpRSlGgVSzJoFkdAnetZJTVDr3V9lChoBmgJaA9DCOnUlc/yvO6/lIaUUpRoFUsyaBZHQJ3q1pblijN1fZQoaAZoCWgPQwiEEJAvoQLyv5SGlFKUaBVLMmgWR0Cd8KDEm6XjdX2UKGgGaAloD0MI/gsEATJ03r+UhpRSlGgVSzJoFkdAnfAhfjS5RXV9lChoBmgJaA9DCKsGYW738uG/lIaUUpRoFUsyaBZHQJ3vnVZs9B91fZQoaAZoCWgPQwjk1w+xwUIFwJSGlFKUaBVLMmgWR0Cd7xpHI6sAdX2UKGgGaAloD0MIYOXQItv58r+UhpRSlGgVSzJoFkdAnfT3JHRTj3V9lChoBmgJaA9DCNffEoB/Cv2/lIaUUpRoFUsyaBZHQJ30eOMl1KZ1fZQoaAZoCWgPQwhjt88qM2X8v5SGlFKUaBVLMmgWR0Cd8/UeuFHsdX2UKGgGaAloD0MIdjdPdciN+7+UhpRSlGgVSzJoFkdAnfNyRwIdEXV9lChoBmgJaA9DCI/ecB+5lQPAlIaUUpRoFUsyaBZHQJ35d5D7ZWd1fZQoaAZoCWgPQwj8j0yHTk/6v5SGlFKUaBVLMmgWR0Cd+PbRWtEHdX2UKGgGaAloD0MItvXTf9YcAcCUhpRSlGgVSzJoFkdAnfhyWzF+/nV9lChoBmgJaA9DCI9TdCSXf/i/lIaUUpRoFUsyaBZHQJ3377+DOC51fZQoaAZoCWgPQwglrfiGwmfSv5SGlFKUaBVLMmgWR0Cd/IVd5Y5ldX2UKGgGaAloD0MIjiEAOPbsBcCUhpRSlGgVSzJoFkdAnfwDyWiUPnV9lChoBmgJaA9DCCRFZFjFm/a/lIaUUpRoFUsyaBZHQJ37fPa+N991fZQoaAZoCWgPQwg3qWis/R0FwJSGlFKUaBVLMmgWR0Cd+vgNPP9ldX2UKGgGaAloD0MIzVfJx+7CAMCUhpRSlGgVSzJoFkdAnf8AEU0vXnV9lChoBmgJaA9DCOUrgZTYNeC/lIaUUpRoFUsyaBZHQJ3+fi97F851fZQoaAZoCWgPQwgCYhIu5FHwv5SGlFKUaBVLMmgWR0Cd/fd7v5P/dX2UKGgGaAloD0MIp60RwTg49L+UhpRSlGgVSzJoFkdAnf1y0F8ohXV9lChoBmgJaA9DCAR1yqMbIf2/lIaUUpRoFUsyaBZHQJ4BSv0RODd1fZQoaAZoCWgPQwgiT5Kumfzvv5SGlFKUaBVLMmgWR0CeAMnMMZxadX2UKGgGaAloD0MIvcPt0LCY/L+UhpRSlGgVSzJoFkdAngBE8aGYbHV9lChoBmgJaA9DCBXJVwIp8fm/lIaUUpRoFUsyaBZHQJ3/wa4tpVV1fZQoaAZoCWgPQwhTBDi9i/fzv5SGlFKUaBVLMmgWR0CeA5SydFvydX2UKGgGaAloD0MIfXcrS3QW8b+UhpRSlGgVSzJoFkdAngMSzkZJkHV9lChoBmgJaA9DCDBHj9/bdPu/lIaUUpRoFUsyaBZHQJ4CjGxUvPF1fZQoaAZoCWgPQwh2cRsN4G32v5SGlFKUaBVLMmgWR0CeAgdxyXD4dX2UKGgGaAloD0MImBb1Se6w/7+UhpRSlGgVSzJoFkdAngX++dsi0XV9lChoBmgJaA9DCI20VN6OsPe/lIaUUpRoFUsyaBZHQJ4FfjU/fO51fZQoaAZoCWgPQwgkXp7OFSX2v5SGlFKUaBVLMmgWR0CeBPk8RtgsdX2UKGgGaAloD0MIDmd+NQcI77+UhpRSlGgVSzJoFkdAngR1UlzEJnV9lChoBmgJaA9DCKn7AKQ28fC/lIaUUpRoFUsyaBZHQJ4IWfg75mB1fZQoaAZoCWgPQwiJmujzUcbzv5SGlFKUaBVLMmgWR0CeB9gg5imVdX2UKGgGaAloD0MI8wGBzqTNBMCUhpRSlGgVSzJoFkdAngdR1oxpL3V9lChoBmgJaA9DCAK7mjxldfm/lIaUUpRoFUsyaBZHQJ4GzPrv9cd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16842, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}