git-base-coco-dummy-temp100

This model is a fine-tuned version of microsoft/git-base-coco on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3244
  • Wer Score: 2.5274
  • Blue Score: 0.1539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer Score Blue Score
8.003 1.01 35 6.0344 1.2184 0.0042
4.5865 2.03 70 2.7898 2.0108 0.0150
1.6831 3.04 105 0.7239 1.8867 0.0250
0.5535 4.06 140 0.4567 1.9632 0.0377
0.3898 5.07 175 0.4016 2.2010 0.0618
0.3024 6.09 210 0.3712 1.7956 0.0892
0.2411 7.1 245 0.3506 2.5006 0.0950
0.2034 8.12 280 0.3388 2.1609 0.1094
0.1721 9.13 315 0.3319 2.2919 0.1092
0.1449 10.14 350 0.3236 2.1683 0.1184
0.1245 11.16 385 0.3205 2.3594 0.1242
0.1073 12.17 420 0.3160 2.4311 0.1343
0.0956 13.19 455 0.3141 2.3027 0.1327
0.0821 14.2 490 0.3121 2.3957 0.1369
0.07 15.22 525 0.3131 2.2508 0.1407
0.0678 16.23 560 0.3114 2.4291 0.1390
0.0563 17.25 595 0.3113 2.5218 0.1428
0.0518 18.26 630 0.3108 2.2964 0.1513
0.0474 19.28 665 0.3138 2.2457 0.1492
0.0407 20.29 700 0.3136 2.3072 0.1485
0.0383 21.3 735 0.3138 2.4791 0.1426
0.0373 22.32 770 0.3136 2.4541 0.1472
0.03 23.33 805 0.3145 2.4218 0.1500
0.0316 24.35 840 0.3141 2.4169 0.1466
0.0255 25.36 875 0.3149 2.5450 0.1473
0.0266 26.38 910 0.3159 2.4613 0.1475
0.0245 27.39 945 0.3161 2.4809 0.1506
0.0223 28.41 980 0.3172 2.4252 0.1516
0.0189 29.42 1015 0.3173 2.6111 0.1501
0.0204 30.43 1050 0.3184 2.5457 0.1518
0.0194 31.45 1085 0.3191 2.6389 0.1493
0.0154 32.46 1120 0.3188 2.5125 0.1518
0.017 33.48 1155 0.3192 2.5197 0.1485
0.0161 34.49 1190 0.3210 2.5103 0.1512
0.0146 35.51 1225 0.3206 2.4992 0.1527
0.0135 36.52 1260 0.3221 2.4620 0.1516
0.0139 37.54 1295 0.3216 2.4769 0.1519
0.0132 38.55 1330 0.3215 2.5613 0.1525
0.0121 39.57 1365 0.3222 2.5648 0.1518
0.0121 40.58 1400 0.3226 2.5601 0.1541
0.0114 41.59 1435 0.3231 2.4888 0.1527
0.0123 42.61 1470 0.3239 2.5037 0.1537
0.0101 43.62 1505 0.3241 2.5378 0.1526
0.0109 44.64 1540 0.3245 2.5312 0.1534
0.0109 45.65 1575 0.3245 2.5692 0.1529
0.0098 46.67 1610 0.3243 2.5583 0.1536
0.0109 47.68 1645 0.3248 2.5498 0.1536
0.0101 48.7 1680 0.3244 2.5274 0.1539

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
13
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.