|
--- |
|
license: apache-2.0 |
|
base_model: facebook/levit-128 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: levit-128-finetuned-flower |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9506352087114338 |
|
- name: Precision |
|
type: precision |
|
value: 0.950988634564862 |
|
- name: Recall |
|
type: recall |
|
value: 0.9506352087114338 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9505680872971296 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# levit-128-finetuned-flower |
|
|
|
This model is a fine-tuned version of [facebook/levit-128](https://huggingface.co/facebook/levit-128) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1807 |
|
- Accuracy: 0.9506 |
|
- Precision: 0.9510 |
|
- Recall: 0.9506 |
|
- F1: 0.9506 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.005 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6679 | 1.0 | 40 | 0.6957 | 0.8076 | 0.8492 | 0.8076 | 0.8060 | |
|
| 0.7188 | 2.0 | 80 | 0.7094 | 0.7822 | 0.7997 | 0.7822 | 0.7789 | |
|
| 0.7277 | 3.0 | 120 | 0.7803 | 0.7477 | 0.7912 | 0.7477 | 0.7480 | |
|
| 0.561 | 4.0 | 160 | 0.5489 | 0.8352 | 0.8462 | 0.8352 | 0.8292 | |
|
| 0.4958 | 5.0 | 200 | 0.4067 | 0.8770 | 0.8852 | 0.8770 | 0.8766 | |
|
| 0.4681 | 6.0 | 240 | 0.4801 | 0.8457 | 0.8570 | 0.8457 | 0.8423 | |
|
| 0.368 | 7.0 | 280 | 0.4348 | 0.8617 | 0.8697 | 0.8617 | 0.8618 | |
|
| 0.355 | 8.0 | 320 | 0.3401 | 0.8926 | 0.8971 | 0.8926 | 0.8924 | |
|
| 0.3164 | 9.0 | 360 | 0.3510 | 0.8871 | 0.8935 | 0.8871 | 0.8871 | |
|
| 0.2972 | 10.0 | 400 | 0.2877 | 0.9140 | 0.9159 | 0.9140 | 0.9133 | |
|
| 0.2639 | 11.0 | 440 | 0.2588 | 0.9245 | 0.9246 | 0.9245 | 0.9233 | |
|
| 0.264 | 12.0 | 480 | 0.2811 | 0.9096 | 0.9155 | 0.9096 | 0.9097 | |
|
| 0.2082 | 13.0 | 520 | 0.2368 | 0.9238 | 0.9244 | 0.9238 | 0.9225 | |
|
| 0.1506 | 14.0 | 560 | 0.2552 | 0.9205 | 0.9244 | 0.9205 | 0.9200 | |
|
| 0.179 | 15.0 | 600 | 0.2133 | 0.9401 | 0.9421 | 0.9401 | 0.9399 | |
|
| 0.1388 | 16.0 | 640 | 0.2170 | 0.9376 | 0.9388 | 0.9376 | 0.9377 | |
|
| 0.116 | 17.0 | 680 | 0.1817 | 0.9466 | 0.9468 | 0.9466 | 0.9464 | |
|
| 0.0976 | 18.0 | 720 | 0.1915 | 0.9470 | 0.9477 | 0.9470 | 0.9473 | |
|
| 0.0806 | 19.0 | 760 | 0.1876 | 0.9492 | 0.9501 | 0.9492 | 0.9493 | |
|
| 0.0911 | 20.0 | 800 | 0.1807 | 0.9506 | 0.9510 | 0.9506 | 0.9506 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|