|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.5.4", |
|
"changelog": { |
|
"0.5.4": "fix the wrong GPU index issue of multi-node", |
|
"0.5.3": "remove error dollar symbol in readme", |
|
"0.5.2": "remove the CheckpointLoader from the train.json", |
|
"0.5.1": "add RAM warning", |
|
"0.5.0": "update TensorRT descriptions", |
|
"0.4.9": "update the model weights", |
|
"0.4.8": "update the TensorRT part in the README file", |
|
"0.4.7": "fix mgpu finalize issue", |
|
"0.4.6": "enable deterministic training", |
|
"0.4.5": "add the command of executing inference with TensorRT models", |
|
"0.4.4": "adapt to BundleWorkflow interface", |
|
"0.4.3": "update this bundle to support TensorRT convert", |
|
"0.4.2": "support monai 1.2 new FlexibleUNet", |
|
"0.4.1": "add name tag", |
|
"0.4.0": "add support for multi-GPU training and evaluation", |
|
"0.3.2": "restructure readme to match updated template", |
|
"0.3.1": "add figures of workflow and metrics, add invert transform", |
|
"0.3.0": "update dataset processing", |
|
"0.2.1": "update to use monai 1.0.1", |
|
"0.2.0": "update license files", |
|
"0.1.0": "complete the first version model package", |
|
"0.0.1": "initialize the model package structure" |
|
}, |
|
"monai_version": "1.2.0", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"nibabel": "4.0.1", |
|
"pytorch-ignite": "0.4.9" |
|
}, |
|
"name": "Endoscopic tool segmentation", |
|
"task": "Endoscopic tool segmentation", |
|
"description": "A pre-trained binary segmentation model for endoscopic tool segmentation", |
|
"authors": "NVIDIA DLMED team", |
|
"copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION", |
|
"data_source": "private dataset", |
|
"data_type": "RGB", |
|
"image_classes": "three channel data, intensity [0-255]", |
|
"label_classes": "single channel data, 1/255 is tool, 0 is background", |
|
"pred_classes": "2 channels OneHot data, channel 1 is tool, channel 0 is background", |
|
"eval_metrics": { |
|
"mean_iou": 0.86 |
|
}, |
|
"references": [ |
|
"Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. ICML, 2019a. https://arxiv.org/pdf/1905.11946.pdf", |
|
"O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234\u2013241. Springer, 2015. https://arxiv.org/pdf/1505.04597.pdf" |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "magnitude", |
|
"format": "RGB", |
|
"modality": "regular", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
736, |
|
480 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "R", |
|
"1": "G", |
|
"2": "B" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "segmentation", |
|
"num_channels": 2, |
|
"spatial_shape": [ |
|
736, |
|
480 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "tools" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|