monai
medical
File size: 3,935 Bytes
c8da237
 
3f86222
c8da237
3f86222
392414b
77a41dd
19974c9
ed86d0a
3a2fdad
c787175
7406c7e
83ad0c8
bd519ec
dc87221
d3db992
afbd958
260dd16
378b33d
4c6d8ac
4116f0b
76338b6
86522f2
c8da237
 
 
 
3f86222
dc87221
 
c8da237
 
 
 
260dd16
 
c8da237
 
 
 
 
 
 
 
 
3a2fdad
c8da237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.5.4",
    "changelog": {
        "0.5.4": "fix the wrong GPU index issue of multi-node",
        "0.5.3": "remove error dollar symbol in readme",
        "0.5.2": "remove the CheckpointLoader from the train.json",
        "0.5.1": "add RAM warning",
        "0.5.0": "update TensorRT descriptions",
        "0.4.9": "update the model weights",
        "0.4.8": "update the TensorRT part in the README file",
        "0.4.7": "fix mgpu finalize issue",
        "0.4.6": "enable deterministic training",
        "0.4.5": "add the command of executing inference with TensorRT models",
        "0.4.4": "adapt to BundleWorkflow interface",
        "0.4.3": "update this bundle to support TensorRT convert",
        "0.4.2": "support monai 1.2 new FlexibleUNet",
        "0.4.1": "add name tag",
        "0.4.0": "add support for multi-GPU training and evaluation",
        "0.3.2": "restructure readme to match updated template",
        "0.3.1": "add figures of workflow and metrics, add invert transform",
        "0.3.0": "update dataset processing",
        "0.2.1": "update to use monai 1.0.1",
        "0.2.0": "update license files",
        "0.1.0": "complete the first version model package",
        "0.0.1": "initialize the model package structure"
    },
    "monai_version": "1.2.0",
    "pytorch_version": "1.13.1",
    "numpy_version": "1.22.2",
    "optional_packages_version": {
        "nibabel": "4.0.1",
        "pytorch-ignite": "0.4.9"
    },
    "name": "Endoscopic tool segmentation",
    "task": "Endoscopic tool segmentation",
    "description": "A pre-trained binary segmentation model for endoscopic tool segmentation",
    "authors": "NVIDIA DLMED team",
    "copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION",
    "data_source": "private dataset",
    "data_type": "RGB",
    "image_classes": "three channel data, intensity [0-255]",
    "label_classes": "single channel data, 1/255 is tool, 0 is background",
    "pred_classes": "2 channels OneHot data, channel 1 is tool, channel 0 is background",
    "eval_metrics": {
        "mean_iou": 0.86
    },
    "references": [
        "Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. ICML, 2019a. https://arxiv.org/pdf/1905.11946.pdf",
        "O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234\u2013241. Springer, 2015. https://arxiv.org/pdf/1505.04597.pdf"
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "magnitude",
                "format": "RGB",
                "modality": "regular",
                "num_channels": 3,
                "spatial_shape": [
                    736,
                    480
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": false,
                "channel_def": {
                    "0": "R",
                    "1": "G",
                    "2": "B"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "image",
                "format": "segmentation",
                "num_channels": 2,
                "spatial_shape": [
                    736,
                    480
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": false,
                "channel_def": {
                    "0": "background",
                    "1": "tools"
                }
            }
        }
    }
}