metadata
library_name: transformers
license: mit
base_model: facebook/m2m100_1.2B
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: model_output
results: []
datasets:
- ArielUW/jobtitles
model_output
This model is a fine-tuned version of facebook/m2m100_1.2B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7263
- Bleu: 93.9441
- Gen Len: 36.358
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
23.051 | 1.0 | 38 | 4.3445 | 89.5045 | 35.746 |
15.9099 | 2.0 | 76 | 3.5044 | 91.9617 | 36.366 |
12.7846 | 3.0 | 114 | 2.8211 | 92.7676 | 36.22 |
10.3083 | 4.0 | 152 | 2.3006 | 93.675 | 36.284 |
8.4622 | 5.0 | 190 | 1.9316 | 93.6498 | 36.348 |
7.3015 | 6.0 | 228 | 1.7263 | 93.9441 | 36.358 |
6.8211 | 6.8212 | 259 | 1.6685 | 93.7274 | 36.306 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0