monsoon-nlp
commited on
Commit
•
40d542a
1
Parent(s):
b55364a
Update README.md
Browse files
README.md
CHANGED
@@ -3,31 +3,40 @@ library_name: sentence-transformers
|
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
-
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
|
|
9 |
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
```
|
23 |
-
pip install -U sentence-transformers
|
24 |
```
|
25 |
|
26 |
-
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
-
|
31 |
|
32 |
model = SentenceTransformer('monsoon-nlp/protein-matryoshka-embeddings')
|
33 |
embeddings = model.encode(sentences)
|
@@ -35,96 +44,29 @@ print(embeddings)
|
|
35 |
```
|
36 |
|
37 |
|
|
|
38 |
|
39 |
-
|
40 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
41 |
-
|
42 |
-
```python
|
43 |
-
from transformers import AutoTokenizer, AutoModel
|
44 |
-
import torch
|
45 |
-
|
46 |
-
|
47 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
-
def mean_pooling(model_output, attention_mask):
|
49 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
-
|
53 |
-
|
54 |
-
# Sentences we want sentence embeddings for
|
55 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
-
|
57 |
-
# Load model from HuggingFace Hub
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/protein-matryoshka-embeddings')
|
59 |
-
model = AutoModel.from_pretrained('monsoon-nlp/protein-matryoshka-embeddings')
|
60 |
-
|
61 |
-
# Tokenize sentences
|
62 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
63 |
-
|
64 |
-
# Compute token embeddings
|
65 |
-
with torch.no_grad():
|
66 |
-
model_output = model(**encoded_input)
|
67 |
-
|
68 |
-
# Perform pooling. In this case, mean pooling.
|
69 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
70 |
-
|
71 |
-
print("Sentence embeddings:")
|
72 |
-
print(sentence_embeddings)
|
73 |
-
```
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
## Evaluation Results
|
78 |
-
|
79 |
-
<!--- Describe how your model was evaluated -->
|
80 |
-
|
81 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=monsoon-nlp/protein-matryoshka-embeddings)
|
82 |
-
|
83 |
-
|
84 |
-
## Training
|
85 |
-
The model was trained with the parameters:
|
86 |
-
|
87 |
-
**DataLoader**:
|
88 |
|
89 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 30000 with parameters:
|
90 |
```
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
```
|
93 |
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
```
|
98 |
-
{'loss': 'CoSENTLoss', 'matryoshka_dims': [768, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1], 'n_dims_per_step': -1}
|
99 |
-
```
|
100 |
-
|
101 |
-
Parameters of the fit()-Method:
|
102 |
-
```
|
103 |
-
{
|
104 |
-
"epochs": 1,
|
105 |
-
"evaluation_steps": 3000,
|
106 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
107 |
-
"max_grad_norm": 1,
|
108 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
109 |
-
"optimizer_params": {
|
110 |
-
"lr": 2e-05
|
111 |
-
},
|
112 |
-
"scheduler": "WarmupLinear",
|
113 |
-
"steps_per_epoch": null,
|
114 |
-
"warmup_steps": 3000,
|
115 |
-
"weight_decay": 0.01
|
116 |
-
}
|
117 |
-
```
|
118 |
-
|
119 |
-
|
120 |
-
## Full Model Architecture
|
121 |
-
```
|
122 |
-
SentenceTransformer(
|
123 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
124 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
125 |
-
)
|
126 |
-
```
|
127 |
|
128 |
-
|
129 |
|
130 |
-
|
|
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
|
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
- biology
|
9 |
|
10 |
---
|
11 |
|
12 |
+
# Protein Matryoshka Embeddings
|
13 |
|
14 |
+
The model generates an embedding for input proteins. It was trained using [Matryoshka loss](https://huggingface.co/blog/matryoshka),
|
15 |
+
so shortened embeddings can be used for faster search and other tasks.
|
16 |
|
17 |
+
Inputs use [IUPAC-IUB codes](https://en.wikipedia.org/wiki/FASTA_format#Sequence_representation) where letters A-Z map to amino acids. For example:
|
18 |
|
19 |
+
"M A R N W S F R V"
|
20 |
|
21 |
+
The base model was [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd).
|
22 |
+
A [sentence-transformers](https://github.com/UKPLab/sentence-transformers) model was trained on cosine-similarity of embeddings
|
23 |
+
from [UniProt](https://www.uniprot.org/help/downloads#embeddings).
|
24 |
+
For train/test/validation datasets of embeddings and distances, see: https://huggingface.co/datasets/monsoon-nlp/protein-pairs-uniprot-swissprot
|
25 |
+
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
Install these dependencies:
|
30 |
|
31 |
```
|
32 |
+
pip install -U sentence-transformers datasets
|
33 |
```
|
34 |
|
35 |
+
Generating embeddings:
|
36 |
|
37 |
```python
|
38 |
from sentence_transformers import SentenceTransformer
|
39 |
+
sequences = ["M S L E Q K...", "M A R N W S F R V..."]
|
40 |
|
41 |
model = SentenceTransformer('monsoon-nlp/protein-matryoshka-embeddings')
|
42 |
embeddings = model.encode(sentences)
|
|
|
44 |
```
|
45 |
|
46 |
|
47 |
+
## Validation Results
|
48 |
|
49 |
+
On 1,000 protein pairs from the validation dataset:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
```
|
52 |
+
|steps|cosine_pearson|cosine_spearman|
|
53 |
+
|-----|--------------|---------------|
|
54 |
+
|3000|0.8598688660086558|0.8666855900999677|
|
55 |
+
|6000|0.8692703523988448|0.8615673651584274|
|
56 |
+
|9000|0.8779733537629968|0.8754158959780602|
|
57 |
+
|12000|0.8877422045031667|0.8881492475969834|
|
58 |
+
|15000|0.9027359688395733|0.899106724739699|
|
59 |
+
|18000|0.9046675789738002|0.9044183600191271|
|
60 |
+
|21000|0.9165801536390973|0.9061381997421003|
|
61 |
+
|24000|0.9128046401341833|0.9076748537082228|
|
62 |
+
|27000|0.918547416546341|0.9127677526055185|
|
63 |
+
|30000|0.9239429677657788|0.9187051589781693|
|
64 |
```
|
65 |
|
66 |
+
## Future
|
67 |
|
68 |
+
This model will be updated when I have examples using it on protein classification tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
I'm interested in whether [embedding quantization](https://huggingface.co/blog/embedding-quantization) could improve these better.
|
71 |
|
72 |
+
If you want to collaborate on future projects / have resources to train longer on more embeddings, please get in touch.
|