Moreno La Quatra
Update README.md
e01caf6
|
raw
history blame
2.77 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - text-classification
  - emotion
  - pytorch
language:
  - en
datasets:
  - emotion
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-base-cased-emotion
    results:
      - task:
          type: text-classification
          name: text-classification
        dataset:
          name: emotion
          type: emotion
          config: default
          split: validation
        metrics:
          - name: accuracy
            type: accuracy
            value: 0.9235
            verified: true

distilbert-base-cased-emotion

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3272
  • Accuracy: 0.9235
  • F1: 0.9217
  • Precision: 0.9224
  • Recall: 0.9235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2776 1.0 500 0.2954 0.9 0.8957 0.9031 0.9
0.1887 2.0 1000 0.1716 0.934 0.9344 0.9370 0.934
0.119 3.0 1500 0.1614 0.9345 0.9342 0.9377 0.9345
0.1001 4.0 2000 0.2018 0.936 0.9353 0.9359 0.936
0.0704 5.0 2500 0.1925 0.935 0.9349 0.9354 0.935
0.0471 6.0 3000 0.2369 0.938 0.9373 0.9377 0.938
0.0322 7.0 3500 0.2693 0.938 0.9382 0.9392 0.938
0.0137 8.0 4000 0.2926 0.937 0.9371 0.9372 0.937
0.0099 9.0 4500 0.2964 0.9365 0.9362 0.9362 0.9365
0.0114 10.0 5000 0.3044 0.935 0.9349 0.9350 0.935

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6