Moreno La Quatra
Update README.md
efc2b31
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - text-classification
  - emotion
  - pytorch
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-base-cased-emotion
    results: []

distilbert-base-cased-emotion

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3272
  • Accuracy: 0.9235
  • F1: 0.9217
  • Precision: 0.9224
  • Recall: 0.9235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2776 1.0 500 0.2954 0.9 0.8957 0.9031 0.9
0.1887 2.0 1000 0.1716 0.934 0.9344 0.9370 0.934
0.119 3.0 1500 0.1614 0.9345 0.9342 0.9377 0.9345
0.1001 4.0 2000 0.2018 0.936 0.9353 0.9359 0.936
0.0704 5.0 2500 0.1925 0.935 0.9349 0.9354 0.935
0.0471 6.0 3000 0.2369 0.938 0.9373 0.9377 0.938
0.0322 7.0 3500 0.2693 0.938 0.9382 0.9392 0.938
0.0137 8.0 4000 0.2926 0.937 0.9371 0.9372 0.937
0.0099 9.0 4500 0.2964 0.9365 0.9362 0.9362 0.9365
0.0114 10.0 5000 0.3044 0.935 0.9349 0.9350 0.935

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6