moreover18's picture
End of training
e6955b3
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9360791655522868

vit-base-patch16-224-in21k-finetuned-eurosat

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1770
  • Accuracy: 0.9361

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.687 0.04 10 0.6778 0.6026
0.6605 0.09 20 0.6359 0.7564
0.6074 0.13 30 0.5734 0.7786
0.5464 0.17 40 0.4877 0.8267
0.4606 0.21 50 0.3836 0.8914
0.379 0.26 60 0.3269 0.8877
0.2746 0.3 70 0.2403 0.9198
0.2974 0.34 80 0.2931 0.8890
0.2459 0.39 90 0.2596 0.9016
0.2507 0.43 100 0.2366 0.9123
0.2627 0.47 110 0.2084 0.9224
0.2481 0.51 120 0.2050 0.9270
0.2372 0.56 130 0.2077 0.9267
0.2468 0.6 140 0.2111 0.9230
0.2272 0.64 150 0.1964 0.9267
0.2568 0.68 160 0.1975 0.9270
0.2608 0.73 170 0.2485 0.9048
0.2641 0.77 180 0.2143 0.9227
0.2347 0.81 190 0.1921 0.9307
0.2231 0.86 200 0.1882 0.9315
0.2147 0.9 210 0.1865 0.9329
0.2028 0.94 220 0.1901 0.9294
0.1792 0.98 230 0.1868 0.9297
0.2471 1.03 240 0.2104 0.9190
0.1896 1.07 250 0.1840 0.9321
0.2181 1.11 260 0.1800 0.9318
0.1861 1.16 270 0.1815 0.9305
0.1761 1.2 280 0.1886 0.9299
0.1703 1.24 290 0.1802 0.9315
0.184 1.28 300 0.1845 0.9321
0.1864 1.33 310 0.1791 0.9342
0.1857 1.37 320 0.1760 0.9347
0.1558 1.41 330 0.1798 0.9318
0.1852 1.45 340 0.1810 0.9323
0.183 1.5 350 0.1775 0.9321
0.2055 1.54 360 0.1789 0.9337
0.207 1.58 370 0.2082 0.9208
0.2264 1.63 380 0.1733 0.9339
0.1954 1.67 390 0.1772 0.9337
0.1676 1.71 400 0.1840 0.9302
0.1727 1.75 410 0.1784 0.9305
0.204 1.8 420 0.1731 0.9353
0.1805 1.84 430 0.1805 0.9310
0.1732 1.88 440 0.1773 0.9337
0.1831 1.93 450 0.1768 0.9337
0.1906 1.97 460 0.1967 0.9259
0.1785 2.01 470 0.1765 0.9331
0.1566 2.05 480 0.1749 0.9361
0.1612 2.1 490 0.1718 0.9342
0.1504 2.14 500 0.1770 0.9361
0.1704 2.18 510 0.1721 0.9363
0.1597 2.22 520 0.1711 0.9345
0.1283 2.27 530 0.1775 0.9361
0.1697 2.31 540 0.1722 0.9361
0.1541 2.35 550 0.1729 0.9366
0.1466 2.4 560 0.1708 0.9369
0.1604 2.44 570 0.1720 0.9371
0.1798 2.48 580 0.1718 0.9382
0.134 2.52 590 0.1733 0.9371
0.1215 2.57 600 0.1749 0.9369
0.1284 2.61 610 0.1760 0.9358
0.1449 2.65 620 0.1745 0.9361
0.214 2.7 630 0.1729 0.9382
0.1684 2.74 640 0.1724 0.9369
0.143 2.78 650 0.1737 0.9377
0.1491 2.82 660 0.1753 0.9366
0.1636 2.87 670 0.1743 0.9371
0.1672 2.91 680 0.1724 0.9377
0.1501 2.95 690 0.1720 0.9374

Framework versions

  • Transformers 4.35.0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.14.1