File size: 2,943 Bytes
f713c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-resnet50_0831
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.976407675369613
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-50-finetuned-resnet50_0831

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0862
- Accuracy: 0.9764

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9066        | 1.0   | 223  | 0.8770          | 0.6659   |
| 0.5407        | 2.0   | 446  | 0.4251          | 0.7867   |
| 0.3614        | 3.0   | 669  | 0.2009          | 0.9390   |
| 0.3016        | 4.0   | 892  | 0.1362          | 0.9582   |
| 0.2358        | 5.0   | 1115 | 0.1139          | 0.9676   |
| 0.247         | 6.0   | 1338 | 0.1081          | 0.9698   |
| 0.2135        | 7.0   | 1561 | 0.1027          | 0.9720   |
| 0.2043        | 8.0   | 1784 | 0.1026          | 0.9695   |
| 0.2165        | 9.0   | 2007 | 0.0957          | 0.9733   |
| 0.1983        | 10.0  | 2230 | 0.0936          | 0.9736   |
| 0.2116        | 11.0  | 2453 | 0.0949          | 0.9736   |
| 0.2341        | 12.0  | 2676 | 0.0905          | 0.9755   |
| 0.2004        | 13.0  | 2899 | 0.0901          | 0.9739   |
| 0.1956        | 14.0  | 3122 | 0.0877          | 0.9755   |
| 0.1668        | 15.0  | 3345 | 0.0847          | 0.9764   |
| 0.1855        | 16.0  | 3568 | 0.0850          | 0.9755   |
| 0.18          | 17.0  | 3791 | 0.0897          | 0.9745   |
| 0.1772        | 18.0  | 4014 | 0.0852          | 0.9755   |
| 0.1881        | 19.0  | 4237 | 0.0845          | 0.9764   |
| 0.2145        | 20.0  | 4460 | 0.0862          | 0.9764   |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1