|
--- |
|
license: cc-by-sa-3.0 |
|
datasets: |
|
- mosaicml/dolly_hhrlhf |
|
tags: |
|
- Composer |
|
- MosaicML |
|
- llm-foundry |
|
--- |
|
|
|
# MPT-7B-Instruct |
|
|
|
MPT-7B-Instruct is a model for short-form instruction following. |
|
It is built by finetuning [MPT-7B](https://huggingface.co/spaces/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. |
|
* License: _CC-By-SA-3.0_ (commercial use permitted) |
|
* [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct) |
|
|
|
|
|
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. |
|
|
|
## Model Date |
|
|
|
May 5, 2023 |
|
|
|
## Model License |
|
|
|
Apache-2.0 (commercial use permitted) |
|
|
|
## Documentation |
|
|
|
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) |
|
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) |
|
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://join.slack.com/t/mosaicml-community/shared_invite/zt-1btms90mc-GipE2ufuPkKY0QBrmF3LSA)! |
|
|
|
### Example Question/Instruction |
|
|
|
**Longboi24**: |
|
> What is a quoll? |
|
|
|
**MPT-7B-Instruct**: |
|
|
|
>A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America |
|
|
|
## How to Use |
|
|
|
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. |
|
|
|
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. |
|
|
|
```python |
|
import transformers |
|
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-7b-instruct', trust_remote_code=True) |
|
``` |
|
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. |
|
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. |
|
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. |
|
|
|
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`: |
|
```python |
|
config = transformers.AutoConfig.from_pretrained('mosaicml/mpt-7b-instruct', trust_remote_code=True) |
|
config.attn_config['attn_impl'] = 'triton' |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-7b-instruct', config=config, torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
model.to(device='cuda:0') |
|
``` |
|
|
|
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: |
|
|
|
```python |
|
config = transformers.AutoConfig.from_pretrained('mosaicml/mpt-7b', trust_remote_code=True) |
|
config.update({"max_seq_len": 4096}) |
|
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-7b', config=config, trust_remote_code=True) |
|
``` |
|
|
|
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") |
|
``` |
|
|
|
## Model Description |
|
|
|
The architecture is a modification of a standard decoder-only transformer. |
|
|
|
The model has been modified from a standard transformer in the following ways: |
|
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) |
|
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings |
|
* It does not use biases |
|
|
|
|
|
| Hyperparameter | Value | |
|
|----------------|-------| |
|
|n_parameters | 6.7B | |
|
|n_layers | 32 | |
|
| n_heads | 32 | |
|
| d_model | 4096 | |
|
| vocab size | 50432 | |
|
| sequence length | 2048 | |
|
|
|
## PreTraining Data |
|
|
|
For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). |
|
|
|
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. |
|
|
|
## Limitations and Biases |
|
|
|
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ |
|
|
|
MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. |
|
MPT-7B-Instruct was trained on various public datasets. |
|
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. |
|
|
|
|
|
## Acknowledgements |
|
|
|
This model was finetuned by Sam Havens and the MosaicML NLP team |
|
|
|
## MosaicML Platform |
|
|
|
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo). |
|
|
|
|
|
## Citation |
|
|
|
Please cite this model using the following format: |
|
|
|
``` |
|
@online{MosaicML2023Introducing, |
|
author = {MosaicML NLP Team}, |
|
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, |
|
year = {2023}, |
|
url = {www.mosaicml.com/blog/mpt-7b}, |
|
note = {Accessed: 2023-03-28}, % change this date |
|
urldate = {2023-03-28} % change this date |
|
} |
|
``` |