5class224_b_p_c_u_n / README.md
mostafasmart's picture
Upload TFViTForImageClassification
56d73d1 verified
|
raw
history blame
2.5 kB
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_keras_callback
model-index:
- name: 5class224_b_p_c_u_n
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# 5class224_b_p_c_u_n
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0113
- Train Accuracy: 0.9459
- Train Top-3-accuracy: 0.9925
- Validation Loss: 0.1326
- Validation Accuracy: 0.9504
- Validation Top-3-accuracy: 0.9932
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.6186 | 0.6303 | 0.9043 | 0.2809 | 0.8026 | 0.9654 | 0 |
| 0.1012 | 0.8565 | 0.9767 | 0.1746 | 0.8901 | 0.9832 | 1 |
| 0.0296 | 0.9093 | 0.9865 | 0.1447 | 0.9234 | 0.9888 | 2 |
| 0.0137 | 0.9329 | 0.9904 | 0.1352 | 0.9404 | 0.9915 | 3 |
| 0.0113 | 0.9459 | 0.9925 | 0.1326 | 0.9504 | 0.9932 | 4 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1