vit-base-patch16-224-EyesNewfourclassTryAfterYolo

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0091
  • Train Accuracy: 0.9437
  • Train Top-3-accuracy: 1.0
  • Validation Loss: 0.2316
  • Validation Accuracy: 0.9437
  • Validation Top-3-accuracy: 0.9946
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 465, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.5159 0.9276 0.9757 0.2680 0.9276 0.9973 0
0.0910 0.9383 0.9993 0.2330 0.9383 0.9973 1
0.0277 0.9383 1.0 0.2437 0.9383 0.9946 2
0.0122 0.9437 1.0 0.2309 0.9437 0.9973 3
0.0091 0.9437 1.0 0.2316 0.9437 0.9946 4

Framework versions

  • Transformers 4.42.4
  • TensorFlow 2.17.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mostafasmart/vit-base-patch16-224-EyesNewfourclassTryAfterYolo

Finetuned
(539)
this model
Finetunes
2 models