mouadenna's picture
End of training
ab0e089 verified
|
raw
history blame
4.99 kB
metadata
license: other
base_model: nvidia/segformer-b0-finetuned-ade-512-512
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
metrics:
  - precision
model-index:
  - name: segformer-b0-finetuned-segments-pv_v1_3x_normalized_p100_4batch
    results: []

Visualize in Weights & Biases

segformer-b0-finetuned-segments-pv_v1_3x_normalized_p100_4batch

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0067
  • Mean Iou: 0.8641
  • Precision: 0.9173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.0077 0.9993 687 0.0077 0.7897 0.8235
0.0056 2.0 1375 0.0059 0.8193 0.8760
0.0065 2.9993 2062 0.0064 0.8222 0.9068
0.0047 4.0 2750 0.0061 0.8195 0.9299
0.0039 4.9993 3437 0.0055 0.8440 0.9075
0.0044 6.0 4125 0.0063 0.8208 0.8479
0.0034 6.9993 4812 0.0080 0.7750 0.8153
0.0037 8.0 5500 0.0053 0.8475 0.9084
0.004 8.9993 6187 0.0073 0.8013 0.8237
0.003 10.0 6875 0.0056 0.8476 0.8955
0.0038 10.9993 7562 0.0058 0.8273 0.9144
0.0028 12.0 8250 0.0065 0.8143 0.8888
0.0031 12.9993 8937 0.0064 0.8175 0.9188
0.003 14.0 9625 0.0051 0.8491 0.9027
0.0025 14.9993 10312 0.0059 0.8558 0.9085
0.0029 16.0 11000 0.0057 0.8454 0.9029
0.0026 16.9993 11687 0.0057 0.8547 0.9230
0.0024 18.0 12375 0.0059 0.8579 0.9045
0.0025 18.9993 13062 0.0059 0.8645 0.9094
0.0025 20.0 13750 0.0059 0.8498 0.9174
0.0024 20.9993 14437 0.0056 0.8576 0.8970
0.0022 22.0 15125 0.0063 0.8541 0.8952
0.0031 22.9993 15812 0.0054 0.8508 0.9154
0.0021 24.0 16500 0.0057 0.8545 0.9119
0.0022 24.9993 17187 0.0058 0.8474 0.9149
0.0022 26.0 17875 0.0066 0.8325 0.8879
0.0021 26.9993 18562 0.0062 0.8522 0.9156
0.0021 28.0 19250 0.0063 0.8488 0.8932
0.002 28.9993 19937 0.0061 0.8579 0.9200
0.002 30.0 20625 0.0059 0.8624 0.9182
0.0021 30.9993 21312 0.0061 0.8564 0.9013
0.0019 32.0 22000 0.0060 0.8601 0.9091
0.0018 32.9993 22687 0.0059 0.8640 0.9163
0.0017 34.0 23375 0.0062 0.8622 0.9187
0.0017 34.9993 24062 0.0062 0.8634 0.9245
0.0017 36.0 24750 0.0064 0.8655 0.9196
0.0017 36.9993 25437 0.0063 0.8642 0.9197
0.0016 38.0 26125 0.0065 0.8634 0.9166
0.0016 38.9993 26812 0.0067 0.8639 0.9186
0.0016 39.9709 27480 0.0067 0.8641 0.9173

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1