Visualize in Weights & Biases

segformer-b1-finetuned-segments-pv_v1_3x_normalized_p100_4batch

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0087
  • Mean Iou: 0.8602
  • Precision: 0.9152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.0073 0.9993 687 0.0072 0.7997 0.8395
0.0052 2.0 1375 0.0069 0.8039 0.8906
0.0051 2.9993 2062 0.0060 0.8301 0.8951
0.0048 4.0 2750 0.0057 0.8223 0.9070
0.0039 4.9993 3437 0.0054 0.8433 0.9104
0.0042 6.0 4125 0.0054 0.8414 0.8779
0.0031 6.9993 4812 0.0052 0.8453 0.8852
0.0034 8.0 5500 0.0051 0.8526 0.9146
0.0036 8.9993 6187 0.0059 0.8319 0.8884
0.0027 10.0 6875 0.0058 0.8453 0.8990
0.0028 10.9993 7562 0.0052 0.8552 0.9152
0.0027 12.0 8250 0.0062 0.8459 0.9038
0.0032 12.9993 8937 0.0056 0.8506 0.9163
0.0024 14.0 9625 0.0062 0.8529 0.9189
0.0035 14.9993 10312 0.0058 0.8464 0.9102
0.0024 16.0 11000 0.0059 0.8575 0.9126
0.0023 16.9993 11687 0.0057 0.8527 0.9201
0.0024 18.0 12375 0.0060 0.8573 0.9177
0.0028 18.9993 13062 0.0063 0.8601 0.9064
0.0023 20.0 13750 0.0061 0.8589 0.9164
0.002 20.9993 14437 0.0061 0.8611 0.9046
0.002 22.0 15125 0.0057 0.8633 0.9143
0.002 22.9993 15812 0.0067 0.8552 0.9133
0.0018 24.0 16500 0.0068 0.8594 0.9174
0.0021 24.9993 17187 0.0063 0.8545 0.9111
0.0023 26.0 17875 0.0055 0.8642 0.9149
0.0019 26.9993 18562 0.0060 0.8627 0.9152
0.0017 28.0 19250 0.0063 0.8658 0.9148
0.0017 28.9993 19937 0.0067 0.8644 0.9085
0.0017 30.0 20625 0.0068 0.8578 0.9110
0.0017 30.9993 21312 0.0067 0.8585 0.9130
0.0015 32.0 22000 0.0069 0.8613 0.9103
0.0015 32.9993 22687 0.0073 0.8599 0.9200
0.0014 34.0 23375 0.0074 0.8605 0.9181
0.0014 34.9993 24062 0.0079 0.8581 0.9174
0.0013 36.0 24750 0.0081 0.8582 0.9123
0.0013 36.9993 25437 0.0084 0.8599 0.9166
0.0012 38.0 26125 0.0084 0.8603 0.9139
0.0013 38.9993 26812 0.0092 0.8599 0.9193
0.0012 39.9709 27480 0.0087 0.8602 0.9152

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mouadenna/segformer-b1-finetuned-segments-pv_v1_3x_normalized_p100_4batch

Finetuned
(18)
this model