File size: 4,478 Bytes
138cab8 3c50c5b 138cab8 3c50c5b 138cab8 8a9327f 138cab8 9a0eda9 138cab8 8a9327f 138cab8 a23df53 138cab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-text2sql_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-text2sql_v1
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0733
- Rouge2 Precision: 0.913
- Rouge2 Recall: 0.4038
- Rouge2 Fmeasure: 0.5257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| No log | 1.0 | 11 | 1.9724 | 0.0946 | 0.0257 | 0.0385 |
| No log | 2.0 | 22 | 1.2952 | 0.0925 | 0.0263 | 0.039 |
| No log | 3.0 | 33 | 0.8639 | 0.1083 | 0.0263 | 0.0409 |
| No log | 4.0 | 44 | 0.5684 | 0.2212 | 0.0923 | 0.1248 |
| No log | 5.0 | 55 | 0.3793 | 0.4327 | 0.1813 | 0.2445 |
| No log | 6.0 | 66 | 0.2920 | 0.6667 | 0.3112 | 0.4008 |
| No log | 7.0 | 77 | 0.2351 | 0.7234 | 0.309 | 0.409 |
| No log | 8.0 | 88 | 0.2055 | 0.7374 | 0.3117 | 0.414 |
| No log | 9.0 | 99 | 0.1787 | 0.7306 | 0.3002 | 0.4029 |
| No log | 10.0 | 110 | 0.1540 | 0.7773 | 0.3267 | 0.4352 |
| No log | 11.0 | 121 | 0.1406 | 0.7676 | 0.319 | 0.4246 |
| No log | 12.0 | 132 | 0.1299 | 0.8478 | 0.3723 | 0.4887 |
| No log | 13.0 | 143 | 0.1172 | 0.8202 | 0.3533 | 0.4675 |
| No log | 14.0 | 154 | 0.1133 | 0.8543 | 0.3802 | 0.4976 |
| No log | 15.0 | 165 | 0.1049 | 0.8543 | 0.3802 | 0.4976 |
| No log | 16.0 | 176 | 0.0988 | 0.8252 | 0.3448 | 0.4603 |
| No log | 17.0 | 187 | 0.0921 | 0.8702 | 0.385 | 0.5037 |
| No log | 18.0 | 198 | 0.0877 | 0.8591 | 0.3684 | 0.4878 |
| No log | 19.0 | 209 | 0.0878 | 0.8591 | 0.3654 | 0.4849 |
| No log | 20.0 | 220 | 0.0849 | 0.8591 | 0.3654 | 0.4849 |
| No log | 21.0 | 231 | 0.0806 | 0.882 | 0.3761 | 0.4974 |
| No log | 22.0 | 242 | 0.0791 | 0.9232 | 0.4083 | 0.532 |
| No log | 23.0 | 253 | 0.0794 | 0.8974 | 0.3869 | 0.5098 |
| No log | 24.0 | 264 | 0.0773 | 0.9198 | 0.4104 | 0.5338 |
| No log | 25.0 | 275 | 0.0744 | 0.9232 | 0.4083 | 0.532 |
| No log | 26.0 | 286 | 0.0735 | 0.9232 | 0.4083 | 0.532 |
| No log | 27.0 | 297 | 0.0742 | 0.9272 | 0.4115 | 0.5359 |
| No log | 28.0 | 308 | 0.0740 | 0.913 | 0.4038 | 0.5257 |
| No log | 29.0 | 319 | 0.0734 | 0.913 | 0.4038 | 0.5257 |
| No log | 30.0 | 330 | 0.0733 | 0.913 | 0.4038 | 0.5257 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|