|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-text2sql_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-text2sql_v1 |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0772 |
|
- Rouge2 Precision: 0.8835 |
|
- Rouge2 Recall: 0.39 |
|
- Rouge2 Fmeasure: 0.5088 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| No log | 1.0 | 11 | 1.9420 | 0.0755 | 0.022 | 0.0323 | |
|
| No log | 2.0 | 22 | 1.2731 | 0.0912 | 0.0263 | 0.039 | |
|
| No log | 3.0 | 33 | 0.8717 | 0.0993 | 0.0284 | 0.0424 | |
|
| No log | 4.0 | 44 | 0.5705 | 0.1014 | 0.032 | 0.0464 | |
|
| No log | 5.0 | 55 | 0.3929 | 0.4151 | 0.1528 | 0.2149 | |
|
| No log | 6.0 | 66 | 0.2911 | 0.7778 | 0.351 | 0.4594 | |
|
| No log | 7.0 | 77 | 0.2290 | 0.781 | 0.3305 | 0.4395 | |
|
| No log | 8.0 | 88 | 0.1995 | 0.7381 | 0.2992 | 0.4018 | |
|
| No log | 9.0 | 99 | 0.1768 | 0.752 | 0.3147 | 0.4202 | |
|
| No log | 10.0 | 110 | 0.1554 | 0.7242 | 0.3136 | 0.412 | |
|
| No log | 11.0 | 121 | 0.1446 | 0.8128 | 0.3583 | 0.4694 | |
|
| No log | 12.0 | 132 | 0.1337 | 0.8194 | 0.3653 | 0.478 | |
|
| No log | 13.0 | 143 | 0.1264 | 0.8088 | 0.3564 | 0.4675 | |
|
| No log | 14.0 | 154 | 0.1170 | 0.8036 | 0.3502 | 0.462 | |
|
| No log | 15.0 | 165 | 0.1078 | 0.8851 | 0.3981 | 0.5188 | |
|
| No log | 16.0 | 176 | 0.1046 | 0.8716 | 0.3864 | 0.5054 | |
|
| No log | 17.0 | 187 | 0.1007 | 0.8753 | 0.3851 | 0.5042 | |
|
| No log | 18.0 | 198 | 0.0951 | 0.8756 | 0.3941 | 0.5126 | |
|
| No log | 19.0 | 209 | 0.0928 | 0.8414 | 0.3565 | 0.4708 | |
|
| No log | 20.0 | 220 | 0.0894 | 0.854 | 0.3642 | 0.4808 | |
|
| No log | 21.0 | 231 | 0.0863 | 0.8954 | 0.3954 | 0.5168 | |
|
| No log | 22.0 | 242 | 0.0832 | 0.888 | 0.3931 | 0.5122 | |
|
| No log | 23.0 | 253 | 0.0828 | 0.8835 | 0.39 | 0.5088 | |
|
| No log | 24.0 | 264 | 0.0820 | 0.8835 | 0.39 | 0.5088 | |
|
| No log | 25.0 | 275 | 0.0803 | 0.8835 | 0.39 | 0.5088 | |
|
| No log | 26.0 | 286 | 0.0792 | 0.8835 | 0.39 | 0.5088 | |
|
| No log | 27.0 | 297 | 0.0784 | 0.8761 | 0.3886 | 0.5066 | |
|
| No log | 28.0 | 308 | 0.0775 | 0.8835 | 0.39 | 0.5088 | |
|
| No log | 29.0 | 319 | 0.0772 | 0.8835 | 0.39 | 0.5088 | |
|
| No log | 30.0 | 330 | 0.0772 | 0.8835 | 0.39 | 0.5088 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|