File size: 3,308 Bytes
a5c0eb9
 
 
d34a02d
 
a5c0eb9
 
 
 
 
 
0e686e2
d34a02d
 
 
 
 
 
 
 
 
 
e7ee568
d34a02d
 
e7ee568
d34a02d
 
e7ee568
d34a02d
 
e7ee568
a5c0eb9
 
 
 
 
0e686e2
a5c0eb9
d34a02d
a5c0eb9
e7ee568
 
 
 
 
a5c0eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4eda0
e7ee568
d34a02d
a5c0eb9
 
 
d34a02d
a5c0eb9
 
 
7cf96a8
 
e7ee568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c0eb9
 
 
 
7cf96a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
tags:
- generated_from_trainer
datasets:
- mp-02/funsd
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: mp-02/funsd
      type: mp-02/funsd
    metrics:
    - name: Precision
      type: precision
      value: 0.8746976294146106
    - name: Recall
      type: recall
      value: 0.904
    - name: F1
      type: f1
      value: 0.8891074502089993
    - name: Accuracy
      type: accuracy
      value: 0.8368167202572347
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-funsd

This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6541
- Precision: 0.8747
- Recall: 0.904
- F1: 0.8891
- Accuracy: 0.8368

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 25   | 1.2831          | 0.4033    | 0.4795 | 0.4381 | 0.6092   |
| No log        | 2.0   | 50   | 0.8178          | 0.7266    | 0.7935 | 0.7586 | 0.7748   |
| No log        | 3.0   | 75   | 0.6843          | 0.7951    | 0.8345 | 0.8143 | 0.7990   |
| No log        | 4.0   | 100  | 0.6317          | 0.8024    | 0.861  | 0.8307 | 0.8161   |
| No log        | 5.0   | 125  | 0.5964          | 0.8260    | 0.897  | 0.8600 | 0.8234   |
| No log        | 6.0   | 150  | 0.6050          | 0.8204    | 0.87   | 0.8445 | 0.8207   |
| No log        | 7.0   | 175  | 0.6281          | 0.8203    | 0.8765 | 0.8475 | 0.8168   |
| No log        | 8.0   | 200  | 0.6228          | 0.8449    | 0.8985 | 0.8709 | 0.8235   |
| No log        | 9.0   | 225  | 0.6213          | 0.8345    | 0.88   | 0.8567 | 0.8266   |
| No log        | 10.0  | 250  | 0.6173          | 0.8450    | 0.897  | 0.8702 | 0.8357   |
| No log        | 11.0  | 275  | 0.6476          | 0.8388    | 0.8895 | 0.8634 | 0.8299   |
| No log        | 12.0  | 300  | 0.6359          | 0.8584    | 0.8945 | 0.8761 | 0.8382   |
| No log        | 13.0  | 325  | 0.6469          | 0.8759    | 0.907  | 0.8912 | 0.8395   |
| No log        | 14.0  | 350  | 0.6510          | 0.8729    | 0.9035 | 0.8880 | 0.8373   |
| No log        | 15.0  | 375  | 0.6555          | 0.8656    | 0.902  | 0.8834 | 0.8354   |
| No log        | 16.0  | 400  | 0.6541          | 0.8747    | 0.904  | 0.8891 | 0.8368   |


### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 2.13.2
- Tokenizers 0.10.1