mp-02's picture
update model card README.md
088a745
|
raw
history blame
2.76 kB
---
tags:
- generated_from_trainer
datasets:
- mp-02/funsd
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/funsd
type: mp-02/funsd
metrics:
- name: Precision
type: precision
value: 0.9059871350816427
- name: Recall
type: recall
value: 0.9155
- name: F1
type: f1
value: 0.9107187266849044
- name: Accuracy
type: accuracy
value: 0.8407211759301791
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-funsd
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8860
- Precision: 0.9060
- Recall: 0.9155
- F1: 0.9107
- Accuracy: 0.8407
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 2.63 | 100 | 0.6111 | 0.7963 | 0.864 | 0.8288 | 0.7987 |
| No log | 5.26 | 200 | 0.5861 | 0.8507 | 0.883 | 0.8665 | 0.8266 |
| No log | 7.89 | 300 | 0.5856 | 0.8654 | 0.9005 | 0.8826 | 0.8426 |
| No log | 10.53 | 400 | 0.6502 | 0.8801 | 0.8995 | 0.8897 | 0.8427 |
| 0.4088 | 13.16 | 500 | 0.7679 | 0.8880 | 0.904 | 0.8959 | 0.8373 |
| 0.4088 | 15.79 | 600 | 0.8371 | 0.8820 | 0.904 | 0.8928 | 0.8333 |
| 0.4088 | 18.42 | 700 | 0.8320 | 0.8931 | 0.9145 | 0.9037 | 0.8336 |
| 0.4088 | 21.05 | 800 | 0.8494 | 0.8969 | 0.9135 | 0.9051 | 0.8341 |
| 0.4088 | 23.68 | 900 | 0.8700 | 0.9005 | 0.914 | 0.9072 | 0.8385 |
| 0.061 | 26.32 | 1000 | 0.8860 | 0.9060 | 0.9155 | 0.9107 | 0.8407 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 2.13.2
- Tokenizers 0.10.1