File size: 25,449 Bytes
a377102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:34
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: Quais são as iniciativas do Seringal Lab?
  sentences:
  - O objetivo do Seringal Lab é atuar como um catalisador da transformação interna
    do Ministério Público do Acre, promovendo melhorias contínuas que otimizam o funcionamento
    da instituição e geram um impacto positivo direto para a sociedade.
  - O NAT é vinculado à Procuradoria-Geral de Justiça e presta apoio técnico especializado
    ao MPAC.
  - Algumas das iniciativas do Seringal Lab incluem a Anton.IA, o TranscreveAI e o
    Simplifica.
- source_sentence: Em que ano o NAT foi instituído?
  sentences:
  - O SIMBA é o Sistema de Investigação de Movimentação Bancária, gerenciado pelo
    NAT, para monitoramento de atividades financeiras suspeitas no Acre.
  - O NAT foi criado em 2012 pelo Ato n.º 25, visando oferecer apoio técnico-científico
    e de segurança institucional ao MPAC.
  - O NAT foi instituído no ano de 2012 como uma unidade de suporte técnico e segurança
    ao MPAC.
- source_sentence: Qual o impacto do NAT no combate ao crime organizado?
  sentences:
  - NAT é o Núcleo de Apoio Técnico do Ministério Público do Estado do Acre, criado
    para fornecer suporte especializado em inteligência, segurança institucional e
    operações técnico-científicas.
  - O NAT fortalece o combate ao crime organizado ao fornecer suporte técnico e científico
    ao GAECO e outros órgãos do MPAC.
  - O NAT foi criado para oferecer suporte especializado ao MPAC, garantindo apoio
    em áreas técnico-científicas e de segurança para facilitar as operações de investigação
    e combate ao crime.
- source_sentence: Quem regulamenta o NAT?
  sentences:
  - O escopo do NAT envolve oferecer apoio de inteligência, segurança institucional,
    e suporte técnico-científico ao MPAC, especialmente nas operações do GAECO.
  - NAT significa Núcleo de Apoio Técnico, uma unidade de suporte técnico e de segurança
    ao Ministério Público do Acre.
  - O NAT é regulamentado pelo Ministério Público do Estado do Acre e foi formalizado
    pela Lei Complementar n.º 291 de 2014.
- source_sentence: Qual a importância do NAT para o MPAC?
  sentences:
  - O TranscreveAI transforma áudios em textos de maneira automática e precisa, além
    de registrar o tempo exato do início e do fim de cada fala (timestamp).
  - O NAT é essencial para o MPAC, fornecendo apoio técnico especializado e segurança,
    fortalecendo as operações de investigação e combate ao crime.
  - A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão auxiliar do
    MPAC, fortalecendo seu papel de apoio técnico e científico.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: MPAC BGE Large
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7777777777777778
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8888888888888888
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8888888888888888
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7777777777777778
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17777777777777778
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08888888888888889
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7777777777777778
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8888888888888888
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8888888888888888
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8333333333333334
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8148148148148149
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8249158249158248
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7777777777777778
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8888888888888888
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7777777777777778
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17777777777777778
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7777777777777778
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8888888888888888
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8813288610261599
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.845679012345679
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.845679012345679
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7777777777777778
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8888888888888888
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7777777777777778
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17777777777777778
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7777777777777778
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8888888888888888
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.884918120767199
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8492063492063493
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8492063492063492
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7777777777777778
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8888888888888888
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7777777777777778
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17777777777777778
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7777777777777778
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8888888888888888
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8813288610261599
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.845679012345679
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.845679012345679
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.7777777777777778
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8888888888888888
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7777777777777778
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17777777777777778
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7777777777777778
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8888888888888888
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.884918120767199
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8492063492063493
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8492063492063492
      name: Cosine Map@100
---

# MPAC BGE Large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mp-ac/mpac-bge-large-v1.2")
# Run inference
sentences = [
    'Qual a importância do NAT para o MPAC?',
    'O NAT é essencial para o MPAC, fornecendo apoio técnico especializado e segurança, fortalecendo as operações de investigação e combate ao crime.',
    'A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão auxiliar do MPAC, fortalecendo seu papel de apoio técnico e científico.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.7778     | 0.7778     | 0.7778     | 0.7778     | 0.7778     |
| cosine_accuracy@3   | 0.8889     | 0.8889     | 0.8889     | 0.8889     | 0.8889     |
| cosine_accuracy@5   | 0.8889     | 0.8889     | 0.8889     | 0.8889     | 0.8889     |
| cosine_accuracy@10  | 0.8889     | 1.0        | 1.0        | 1.0        | 1.0        |
| cosine_precision@1  | 0.7778     | 0.7778     | 0.7778     | 0.7778     | 0.7778     |
| cosine_precision@3  | 0.2963     | 0.2963     | 0.2963     | 0.2963     | 0.2963     |
| cosine_precision@5  | 0.1778     | 0.1778     | 0.1778     | 0.1778     | 0.1778     |
| cosine_precision@10 | 0.0889     | 0.1        | 0.1        | 0.1        | 0.1        |
| cosine_recall@1     | 0.7778     | 0.7778     | 0.7778     | 0.7778     | 0.7778     |
| cosine_recall@3     | 0.8889     | 0.8889     | 0.8889     | 0.8889     | 0.8889     |
| cosine_recall@5     | 0.8889     | 0.8889     | 0.8889     | 0.8889     | 0.8889     |
| cosine_recall@10    | 0.8889     | 1.0        | 1.0        | 1.0        | 1.0        |
| **cosine_ndcg@10**  | **0.8333** | **0.8813** | **0.8849** | **0.8813** | **0.8849** |
| cosine_mrr@10       | 0.8148     | 0.8457     | 0.8492     | 0.8457     | 0.8492     |
| cosine_map@100      | 0.8249     | 0.8457     | 0.8492     | 0.8457     | 0.8492     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 34 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 34 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 13.85 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 53.62 tokens</li><li>max: 76 tokens</li></ul> |
* Samples:
  | anchor                                         | positive                                                                                                                                                                                                                    |
  |:-----------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Qual é o objetivo do Simplifica?</code>  | <code>O objetivo do Simplifica é implementar e disseminar a Linguagem Simples no Ministério Público do Estado do Acre, tornando a comunicação institucional mais acessível, clara e objetiva para todos os cidadãos.</code> |
  | <code>Qual é a função do NAT no LAB-LD?</code> | <code>O NAT gerencia o LAB-LD, oferecendo suporte especializado em investigações financeiras para combater a lavagem de dinheiro.</code>                                                                                    |
  | <code>O que é o NAT?</code>                    | <code>O NAT, Núcleo de Apoio Técnico, é uma unidade do Ministério Público do Estado do Acre criada em 2012 para oferecer apoio técnico, científico e de segurança aos órgãos de execução do MPAC.</code>                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0     | 1     | 0.7368                 | 0.7368                 | 0.7222                 | 0.6686                 | 0.7222                |
| 2.0     | 2     | 0.8128                 | 0.7738                 | 0.7292                 | 0.7738                 | 0.7702                |
| 3.0     | 3     | 0.8256                 | 0.8258                 | 0.8542                 | 0.8800                 | 0.8591                |
| **4.0** | **4** | **0.8333**             | **0.8258**             | **0.8704**             | **0.8813**             | **0.8829**            |
| 5.0     | 5     | 0.8333                 | 0.8813                 | 0.8849                 | 0.8813                 | 0.8849                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->