mpekey's picture
End of training
83104f5 verified
metadata
library_name: peft
license: bsd-3-clause
base_model: hugohrban/progen2-base
tags:
  - generated_from_trainer
model-index:
  - name: Progen2_Kinase_PhosphositeGen_dkz_trainwithunlabeled
    results: []

Progen2_Kinase_PhosphositeGen_dkz_trainwithunlabeled

This model is a fine-tuned version of hugohrban/progen2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2967
  • Perplexity: 9.9412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Perplexity
4.763 0.0905 100 2.1876 8.9135
4.6193 0.1811 200 2.9409 18.9328
5.017 0.2716 300 2.4134 11.1717
4.7964 0.3622 400 2.3927 10.9434
4.7938 0.4527 500 2.3926 10.9421
4.7905 0.5432 600 2.3904 10.9178
4.7763 0.6338 700 2.3880 10.8919
4.7542 0.7243 800 2.3813 10.8193
4.763 0.8148 900 2.3772 10.7748
4.7519 0.9054 1000 2.3704 10.7016
4.7497 0.9959 1100 2.3618 10.6099
4.7085 1.0860 1200 2.3547 10.5355
4.7148 1.1766 1300 2.3564 10.5527
4.6749 1.2671 1400 2.3437 10.4194
4.6825 1.3576 1500 2.3395 10.3756
4.668 1.4482 1600 2.3389 10.3699
4.6826 1.5387 1700 2.3344 10.3232
4.6505 1.6292 1800 2.3321 10.3000
4.6549 1.7198 1900 2.3267 10.2445
4.6448 1.8103 2000 2.3268 10.2450
4.6368 1.9009 2100 2.3274 10.2516
4.6255 1.9914 2200 2.3308 10.2862
4.6042 2.0815 2300 2.3210 10.1855
4.6325 2.1720 2400 2.3211 10.1865
4.6238 2.2626 2500 2.3210 10.1856
4.6272 2.3531 2600 2.3153 10.1279
4.6027 2.4436 2700 2.3154 10.1287
4.6121 2.5342 2800 2.3122 10.0962
4.6061 2.6247 2900 2.3110 10.0841
4.6195 2.7153 3000 2.3131 10.1058
4.6046 2.8058 3100 2.3089 10.0634
4.6049 2.8963 3200 2.3133 10.1074
4.6221 2.9869 3300 2.3119 10.0932
4.5677 3.0770 3400 2.3087 10.0615
4.5952 3.1675 3500 2.3085 10.0590
4.5809 3.2580 3600 2.3084 10.0582
4.5803 3.3486 3700 2.3076 10.0507
4.5857 3.4391 3800 2.3077 10.0512
4.585 3.5297 3900 2.3073 10.0476
4.5868 3.6202 4000 2.3032 10.0060
4.5978 3.7107 4100 2.3047 10.0213
4.5732 3.8013 4200 2.3017 9.9909
4.5759 3.8918 4300 2.3021 9.9951
4.5808 3.9823 4400 2.3005 9.9793
4.5465 4.0724 4500 2.3014 9.9880
4.5563 4.1630 4600 2.3004 9.9784
4.5592 4.2535 4700 2.2992 9.9659
4.5596 4.3440 4800 2.2979 9.9532
4.5683 4.4346 4900 2.2969 9.9432
4.5703 4.5251 5000 2.2967 9.9412

Framework versions

  • PEFT 0.13.2
  • Transformers 4.47.1
  • Pytorch 2.1.0.post301
  • Datasets 3.0.2
  • Tokenizers 0.21.0