File size: 7,513 Bytes
647aab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import json
import os
from tqdm import tqdm
import pdb
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
import random
import re
# change model name
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
# change huggingface token here
HUGGING_FACE_TOKEN = "<your_huggingface_token>"
output_folder = "mmc4_json_split"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# import argparse
# parser = argparse.ArgumentParser(description="Input file")
# parser.add_argument('--split_id', type=str, help='evaluation file name')
# args = parser.parse_args()
# split_id = args.split_id
def split_data(data, n):
k, m = divmod(len(data), n)
return (data[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n))
split_id = 0
with open(f"mmc4_final_processed.json", "r") as file:
full_data = json.load(file)
num_splits = 8
splits = list(split_data(full_data, num_splits))
# Take the i-th split
data = splits[split_id]
output_data = []
# instruct_pattern = re.compile(r'<INSTRUCT>(.*?)</INSTRUCT>', re.DOTALL)
rewrite_pattern = re.compile(r'<REWRITE>(.*?)</REWRITE>|<REWRITE>(.*?)', re.DOTALL)
output_path = f"{output_folder}/mmc4_final_split_{split_id}.json"
device_id = f"cuda:{split_id}"
device = torch.device(device_id)
model = AutoModelForCausalLM.from_pretrained(
model_name,
# use_auth_token=HUGGING_FACE_TOKEN,
torch_dtype=torch.bfloat16
# device_map=local_rank
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
model_max_length=2048,
# padding_side="right",
# use_fast=False,
use_auth_token=HUGGING_FACE_TOKEN
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
model.to(device)
for instance in tqdm(data):
conv = instance["conversations"]
input_text = conv[0]['value']
input_text = input_text.split("<BEGIN>")[-1]
output_text = conv[1]['value']
merge_text = input_text + output_text
messages = [
{"role": "system", "content": f"Imagine you are an expert writer. Given a text material, you need to complete two tasks. You need to rewrite the given text material to improve their quality, including making them more fluent, coherent, natural, engaging, and concise. You must ensure the rewritten text faithfully matches with the original text. Do not modify <image> tokens in the rewritten text. In other words, you must maintain all the image tokens <image> in their relative positions in the rewritten text and the number of <image> tokens in the rewritten text should be exactly same with the original text. Wrap your rewritten text material in the following format: <REWRITE> <your rewritten text here> </REWRITE>."},
{"role": "user", "content": f"Now given this text material: {merge_text}, annotate the rewritten text material. You must strictly follow the format requriement and you must not add any notes or explanations inside the special tokens <REWRITE> </REWRITE>."},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=terminators,
do_sample=True,
temperature=1.0,
pad_token_id=tokenizer.eos_token_id,
top_p=0.9
)
response = outputs[0][input_ids.shape[-1]:]
output = tokenizer.decode(response, skip_special_tokens=True)
output = output.strip()
fail_flag = False # flag to indiciate whether rewritting succeed
match_summ = ""
try:
rewrite_text = rewrite_pattern.findall(output)[0]
if len(rewrite_text[0]) > 0:
match_summ = rewrite_text[0]
elif len(rewrite_text[1]) > 0:
match_summ = rewrite_text[1]
else:
# print("cannot find matched rewrite text")
fail_flag = True
except Exception as e:
print(e)
fail_flag = True
# match_summ = match_summ.strip()
num_img = match_summ.count("<image>")
img_len = len(instance["image"])
if num_img != img_len or "<image><image>" in match_summ or "<image> <image>" in match_summ:
# print("wrong <image> token")
fail_flag = True
if fail_flag: # start per sentence rewritting
# print("start per sentence rewritting......")
split_text = merge_text.split('<image>')
split_text = split_text[:-1]
sent_list = []
for st in split_text:
messages = [
{"role": "system", "content": f"Imagine you are an expert writer. Given a sentence, you need to complete two tasks. You need to rewrite the given sentence to improve its quality, including making them more fluent, coherent, natural, engaging, and concise. You must ensure the rewritten sentence faithfully matches with the original sentence. Wrap your rewritten sentence in the following format: <REWRITE> <your rewritten sentence here> </REWRITE>."},
{"role": "user", "content": f"Now given this sentence: {st}, annotate the rewritten sentence. You must strictly follow the format requriement and you must not add any notes or explanations inside the special tokens <REWRITE> </REWRITE>."},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=1.0,
pad_token_id=tokenizer.eos_token_id,
top_p=0.9
)
response = outputs[0][input_ids.shape[-1]:]
output = tokenizer.decode(response, skip_special_tokens=True)
output = output.strip()
try:
rewrite_sent = rewrite_pattern.findall(output)[0]
if len(rewrite_sent[0]) > 0:
sent = rewrite_sent[0]
elif len(rewrite_sent[1]) > 0:
sent = rewrite_sent[1]
else:
# print("cannot find matched rewrite sentence")
sent = st
except Exception as e:
print(e)
sent = st
sent = sent.strip()
sent_list.append(sent)
text_list = sent_list
else:
text_list = match_summ.split('<image>')
text_list = [t.strip() for t in text_list]
split_index = random.randint(1, len(text_list) - 2)
input_list = text_list[:split_index]
output_list = text_list[split_index:]
input_text = " <image>\n".join(input_list)
output_text = " <image>\n".join(output_list)
input_text = input_text + " <image>\n"
input_prompt = f"{instance['instruction']}\n {input_text}"
output_prompt = f"{output_text}"
conversations = [
{
"from": "human",
"value": input_prompt
},
{
"from": "gpt",
"value": output_prompt
}
]
instance["conversations"] = conversations
output_data.append(instance)
print(len(output_data))
with open(output_path, 'w') as file:
json.dump(output_data, file, indent=4) |