Transformers
GGUF
English
Finnish
text-generation-inference
unsloth
llama
trl
sft
Inference Endpoints
imatrix
conversational
mradermacher's picture
auto-patch README.md
a6f75dd verified
|
raw
history blame
6.1 kB
---
base_model: mpasila/Ahma-SlimInstruct-V1-7B
datasets:
- mpasila/LumiOpenInstruct-GrypheSlimOrca-Mix
- LumiOpen/instruction-collection-fin
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
language:
- en
- fi
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/mpasila/Ahma-SlimInstruct-V1-7B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.8 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.2 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.2 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.1 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.1 | fast on arm+i8mm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.1 | fast on arm+sve, low quality |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.1 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.1 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Ahma-SlimInstruct-V0.1-7B-i1-GGUF/resolve/main/Ahma-SlimInstruct-V0.1-7B.i1-Q6_K.gguf) | i1-Q6_K | 5.8 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->