Transformers
Mixture of Experts
mixtral
sharegpt
axolotl
Inference Endpoints
mradermacher's picture
auto-patch README.md
0b8d8b8 verified
---
base_model: MaziyarPanahi/Goku-8x22B-v0.2
datasets:
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
- microsoft/orca-math-word-problems-200k
- teknium/OpenHermes-2.5
language:
- fr
- it
- de
- es
- en
library_name: transformers
license: apache-2.0
model_creator: MaziyarPanahi
model_name: Goku-8x22B-v0.2
quantized_by: mradermacher
tags:
- moe
- mixtral
- sharegpt
- axolotl
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/MaziyarPanahi/Goku-8x22B-v0.2
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Goku-8x22B-v0.2-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q2_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q2_K.gguf.part2of2) | Q2_K | 52.2 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ3_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ3_XS.gguf.part2of2) | IQ3_XS | 58.3 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ3_S.gguf.part2of2) | IQ3_S | 61.6 | beats Q3_K* |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q3_K_S.gguf.part2of2) | Q3_K_S | 61.6 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ3_M.gguf.part2of2) | IQ3_M | 64.6 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q3_K_M.gguf.part2of2) | Q3_K_M | 67.9 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q3_K_L.gguf.part2of2) | Q3_K_L | 72.7 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.IQ4_XS.gguf.part2of2) | IQ4_XS | 76.5 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q4_K_S.gguf.part2of2) | Q4_K_S | 80.6 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q4_K_M.gguf.part2of2) | Q4_K_M | 85.7 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q5_K_S.gguf.part2of2) | Q5_K_S | 97.1 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q5_K_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q5_K_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q5_K_M.gguf.part3of3) | Q5_K_M | 100.1 | |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q6_K.gguf.part3of3) | Q6_K | 115.6 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q8_0.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q8_0.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q8_0.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Goku-8x22B-v0.2-GGUF/resolve/main/Goku-8x22B-v0.2.Q8_0.gguf.part4of4) | Q8_0 | 149.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->