mradermacher's picture
auto-patch README.md
0b41bb3 verified
|
raw
history blame
3.57 kB
---
base_model: Saxo/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B
datasets:
- Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset
- Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset
- Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled
- Saxo/ko-news-corpus-1
- Saxo/ko-news-corpus-2
- Saxo/ko-news-corpus-3
- Saxo/ko-news-corpus-4
- Saxo/ko-news-corpus-5
- Saxo/ko-news-corpus-6
- Saxo/ko-news-corpus-7
- Saxo/ko-news-corpus-8
- Saxo/ko-news-corpus-9
- maywell/ko_Ultrafeedback_binarized
- youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo
- lilacai/glaive-function-calling-v2-sharegpt
- kuotient/gsm8k-ko
language:
- ko
- en
- jp
- cn
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B-i1-GGUF/resolve/main/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B.i1-Q2_K.gguf) | i1-Q2_K | 8.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B-i1-GGUF/resolve/main/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B.i1-IQ3_M.gguf) | i1-IQ3_M | 10.2 | |
| [GGUF](https://huggingface.co/mradermacher/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B-i1-GGUF/resolve/main/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 12.8 | optimal size/speed/quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->