mradermacher's picture
auto-patch README.md
0b41bb3 verified
|
raw
history blame
3.57 kB
metadata
base_model: Saxo/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B
datasets:
  - Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset
  - Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset
  - >-
    Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface
  - >-
    Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface
  - >-
    Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface
  - Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface
  - >-
    Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface
  - >-
    Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled
  - Saxo/ko-news-corpus-1
  - Saxo/ko-news-corpus-2
  - Saxo/ko-news-corpus-3
  - Saxo/ko-news-corpus-4
  - Saxo/ko-news-corpus-5
  - Saxo/ko-news-corpus-6
  - Saxo/ko-news-corpus-7
  - Saxo/ko-news-corpus-8
  - Saxo/ko-news-corpus-9
  - maywell/ko_Ultrafeedback_binarized
  - youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo
  - lilacai/glaive-function-calling-v2-sharegpt
  - kuotient/gsm8k-ko
language:
  - ko
  - en
  - jp
  - cn
library_name: transformers
license: apache-2.0
quantized_by: mradermacher

About

weighted/imatrix quants of https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B

static quants are available at https://huggingface.co/mradermacher/Linkbricks-Horizon-AI-Japanese-Superb-V1-22B-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-Q2_K 8.4 IQ3_XXS probably better
GGUF i1-IQ3_M 10.2
GGUF i1-Q4_K_S 12.8 optimal size/speed/quality

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.