mradermacher's picture
auto-patch README.md
1b92ff0 verified
|
raw
history blame
4.31 kB
---
base_model: barc0/Llama-3.1-ARC-Potpourri-Induction-8B
datasets:
- barc0/induction_heavy_100k_jsonl
- barc0/induction_heavy_suggestfunction_100k_jsonl
- barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3
- barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3
language:
- en
library_name: transformers
license: llama3.1
quantized_by: mradermacher
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.8 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-ARC-Potpourri-Induction-8B-GGUF/resolve/main/Llama-3.1-ARC-Potpourri-Induction-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->