mradermacher's picture
auto-patch README.md
404dceb verified
---
base_model: Manual-Dataset-Creation-Project/Raicho-7B-v0.1
datasets:
- Manual-Dataset-Creation-Project/Malum-130
- sudy-super/CoTangent
- llm-jp/oasst1-21k-ja
- llm-jp/oasst2-33k-ja
- Aratako/Rosebleu-1on1-Dialogues-RP
- baobab-trees/wikipedia-human-retrieval-ja
- aixsatoshi/Longcontext-aozora-summary
- aixsatoshi/Longcontext-aozora-instruction
- kunishou/amenokaku-code-instruct
- HachiML/Evol-hh-rlhf-gen3-1k
- minnade/chat-daily
- HachiML/Hachi-Alpaca
- Kendamarron/jimba-wiki-instruction-calm3
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Manual-Dataset-Creation-Project/Raicho-7B-v0.1
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q2_K.gguf) | Q2_K | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.IQ3_XS.gguf) | IQ3_XS | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q3_K_S.gguf) | Q3_K_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.IQ3_M.gguf) | IQ3_M | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.IQ4_XS.gguf) | IQ4_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q5_K_M.gguf) | Q5_K_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Logical-elyza-llama2-7b-fast-instruct-GGUF/resolve/main/Logical-elyza-llama2-7b-fast-instruct.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->