Transformers
GGUF
English
mergekit
Merge
code
art
Cyber-Series
Inference Endpoints
conversational
mradermacher's picture
auto-patch README.md
1862f42 verified
---
base_model: LeroyDyer/Mixtral_AI_CyberCoder_7b
datasets:
- WhiteRabbitNeo/WRN-Chapter-1
- WhiteRabbitNeo/WRN-Chapter-2
- CyberNative/Code_Vulnerability_Security_DPO
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- mergekit
- merge
- code
- art
- Cyber-Series
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_CyberCoder_7b
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberCoder_7b-GGUF/resolve/main/Mixtral_AI_CyberCoder_7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->