mradermacher's picture
auto-patch README.md
1417c67 verified
---
base_model: jondurbin/bagel-dpo-34b-v0.2
datasets:
- ai2_arc
- unalignment/spicy-3.1
- codeparrot/apps
- facebook/belebele
- boolq
- jondurbin/cinematika-v0.1
- drop
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- cais/mmlu
- Muennighoff/natural-instructions
- openbookqa
- piqa
- Vezora/Tested-22k-Python-Alpaca
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- spider
- squad_v2
- migtissera/Synthia-v1.3
- datasets/winogrande
- nvidia/HelpSteer
- Intel/orca_dpo_pairs
- unalignment/toxic-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- allenai/ultrafeedback_binarized_cleaned
- Squish42/bluemoon-fandom-1-1-rp-cleaned
- LDJnr/Capybara
- JULIELab/EmoBank
- kingbri/PIPPA-shareGPT
language:
- en
library_name: transformers
license: other
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
license_name: yi-license
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q2_K.gguf) | Q2_K | 12.9 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q3_K_S.gguf) | Q3_K_S | 15.1 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q3_K_L.gguf) | Q3_K_L | 18.2 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.IQ4_XS.gguf) | IQ4_XS | 18.7 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q5_K_S.gguf) | Q5_K_S | 23.8 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q5_K_M.gguf) | Q5_K_M | 24.4 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q6_K.gguf) | Q6_K | 28.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-34b-v0.2-GGUF/resolve/main/bagel-dpo-34b-v0.2.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->