detr_finetuned_trashify_box_detector_with_data_aug

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
100.4735 1.0 50 8.0297
4.369 2.0 100 2.7376
2.5518 3.0 150 2.1839
2.2226 4.0 200 1.9228
1.9906 5.0 250 1.7408
1.8219 6.0 300 1.5573
1.6974 7.0 350 1.4779
1.6027 8.0 400 1.4510
1.5517 9.0 450 1.3711
1.4491 10.0 500 1.3177
1.4335 11.0 550 1.2811
1.3645 12.0 600 1.2475
1.3314 13.0 650 1.2060
1.2973 14.0 700 1.1874
1.2506 15.0 750 1.1794
1.2319 16.0 800 1.1657
1.1479 17.0 850 1.1300
1.1466 18.0 900 1.1179
1.1138 19.0 950 1.1095
1.1153 20.0 1000 1.0961
1.0894 21.0 1050 1.0790
1.0691 22.0 1100 1.0870
1.0619 23.0 1150 1.0804
1.0459 24.0 1200 1.0717
1.0363 25.0 1250 1.0704

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
89
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug

Finetuned
(50)
this model

Spaces using mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug 2