|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- arxiv_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: distilbart-cnn-12-6-finetuned-30k-3epoch |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: arxiv_summarization_dataset |
|
type: arxiv_summarization_dataset |
|
config: section |
|
split: test[:2000] |
|
args: section |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 43.696 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-cnn-12-6-finetuned-30k-3epoch |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the arxiv_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3411 |
|
- Rouge1: 43.696 |
|
- Rouge2: 15.6681 |
|
- Rougel: 25.6889 |
|
- Rougelsum: 38.574 |
|
- Gen Len: 121.98 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| 2.7304 | 1.0 | 3750 | 2.4322 | 43.0913 | 15.1302 | 25.2555 | 38.0346 | 122.3755 | |
|
| 2.3518 | 2.0 | 7500 | 2.3613 | 43.8799 | 15.6977 | 25.6984 | 38.7646 | 122.6945 | |
|
| 2.2318 | 3.0 | 11250 | 2.3411 | 43.696 | 15.6681 | 25.6889 | 38.574 | 121.98 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|