metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: He shrugged.
sentences:
- Then he shrugged.
- Two people are dancing.
- The people are Indian.
- source_sentence: a young girl
sentences:
- A girl is playing.
- A dog playing outside.
- The men are moving.
- source_sentence: girl sleeps
sentences:
- A little girl is sleep.
- Two women are walking.
- three men are pictured
- source_sentence: He walked.
sentences:
- A man is moving around.
- A young man is running.
- What idiots girls are!
- source_sentence: '''Go now.'''
sentences:
- Now go.
- The door did not budge.
- I never knew the man.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8418367310465795
name: Pearson Cosine
- type: spearman_cosine
value: 0.8485984004433933
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8356556933767024
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8341402433895243
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8378021883964464
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8364904078404392
name: Spearman Euclidean
- type: pearson_dot
value: 0.7476524989991268
name: Pearson Dot
- type: spearman_dot
value: 0.744450587024694
name: Spearman Dot
- type: pearson_max
value: 0.8418367310465795
name: Pearson Max
- type: spearman_max
value: 0.8485984004433933
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8416891989714739
name: Pearson Cosine
- type: spearman_cosine
value: 0.8490082509626217
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8348187780435371
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8332638443518806
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.837008948364763
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8356608810942396
name: Spearman Euclidean
- type: pearson_dot
value: 0.7426437744526075
name: Pearson Dot
- type: spearman_dot
value: 0.7393063147821313
name: Spearman Dot
- type: pearson_max
value: 0.8416891989714739
name: Pearson Max
- type: spearman_max
value: 0.8490082509626217
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8368212220308662
name: Pearson Cosine
- type: spearman_cosine
value: 0.8458532859579723
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8282949195581827
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8279757292284411
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8304309516656533
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8301347336633305
name: Spearman Euclidean
- type: pearson_dot
value: 0.7158283880571648
name: Pearson Dot
- type: spearman_dot
value: 0.7114038350641958
name: Spearman Dot
- type: pearson_max
value: 0.8368212220308662
name: Pearson Max
- type: spearman_max
value: 0.8458532859579723
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: 0.8291552182220155
name: Pearson Cosine
- type: spearman_cosine
value: 0.8410315378567165
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8205197124842151
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8211956528048456
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8218377581296912
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8223376697977559
name: Spearman Euclidean
- type: pearson_dot
value: 0.6736747525126793
name: Pearson Dot
- type: spearman_dot
value: 0.6704632728499174
name: Spearman Dot
- type: pearson_max
value: 0.8291552182220155
name: Pearson Max
- type: spearman_max
value: 0.8410315378567165
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.8201110050860942
name: Pearson Cosine
- type: spearman_cosine
value: 0.835036509147006
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8028297556674707
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8048509047037822
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8046682420071583
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8063788129340022
name: Spearman Euclidean
- type: pearson_dot
value: 0.6171580093307325
name: Pearson Dot
- type: spearman_dot
value: 0.6176751811391049
name: Spearman Dot
- type: pearson_max
value: 0.8201110050860942
name: Pearson Max
- type: spearman_max
value: 0.835036509147006
name: Spearman Max
SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
"'Go now.'",
'Now go.',
'The door did not budge.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8418 |
spearman_cosine |
0.8486 |
pearson_manhattan |
0.8357 |
spearman_manhattan |
0.8341 |
pearson_euclidean |
0.8378 |
spearman_euclidean |
0.8365 |
pearson_dot |
0.7477 |
spearman_dot |
0.7445 |
pearson_max |
0.8418 |
spearman_max |
0.8486 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8417 |
spearman_cosine |
0.849 |
pearson_manhattan |
0.8348 |
spearman_manhattan |
0.8333 |
pearson_euclidean |
0.837 |
spearman_euclidean |
0.8357 |
pearson_dot |
0.7426 |
spearman_dot |
0.7393 |
pearson_max |
0.8417 |
spearman_max |
0.849 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8368 |
spearman_cosine |
0.8459 |
pearson_manhattan |
0.8283 |
spearman_manhattan |
0.828 |
pearson_euclidean |
0.8304 |
spearman_euclidean |
0.8301 |
pearson_dot |
0.7158 |
spearman_dot |
0.7114 |
pearson_max |
0.8368 |
spearman_max |
0.8459 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8292 |
spearman_cosine |
0.841 |
pearson_manhattan |
0.8205 |
spearman_manhattan |
0.8212 |
pearson_euclidean |
0.8218 |
spearman_euclidean |
0.8223 |
pearson_dot |
0.6737 |
spearman_dot |
0.6705 |
pearson_max |
0.8292 |
spearman_max |
0.841 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8201 |
spearman_cosine |
0.835 |
pearson_manhattan |
0.8028 |
spearman_manhattan |
0.8049 |
pearson_euclidean |
0.8047 |
spearman_euclidean |
0.8064 |
pearson_dot |
0.6172 |
spearman_dot |
0.6177 |
pearson_max |
0.8201 |
spearman_max |
0.835 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
|
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
|
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
|
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
A man selling donuts to a customer. |
A woman drinks her coffee in a small cafe. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 256
per_device_eval_batch_size
: 256
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 256
per_device_eval_batch_size
: 256
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
0.0459 |
100 |
19.459 |
8.2665 |
0.7796 |
0.8046 |
0.8114 |
0.8082 |
0.7996 |
0.0917 |
200 |
11.0035 |
7.6606 |
0.7696 |
0.7971 |
0.8083 |
0.7987 |
0.7933 |
0.1376 |
300 |
9.7634 |
6.4912 |
0.7992 |
0.8126 |
0.8190 |
0.8062 |
0.8127 |
0.1835 |
400 |
9.1103 |
5.9960 |
0.8081 |
0.8229 |
0.8263 |
0.8136 |
0.8224 |
0.2294 |
500 |
8.7099 |
5.9388 |
0.7984 |
0.8138 |
0.8189 |
0.8021 |
0.8166 |
0.2752 |
600 |
8.1215 |
5.6457 |
0.7963 |
0.8104 |
0.8149 |
0.8057 |
0.8121 |
0.3211 |
700 |
7.7441 |
5.4632 |
0.7937 |
0.8153 |
0.8199 |
0.8119 |
0.8150 |
0.3670 |
800 |
7.4849 |
5.1815 |
0.8076 |
0.8208 |
0.8238 |
0.8152 |
0.8172 |
0.4128 |
900 |
7.1386 |
5.1419 |
0.8035 |
0.8181 |
0.8235 |
0.8139 |
0.8189 |
0.4587 |
1000 |
6.839 |
5.1548 |
0.7943 |
0.8118 |
0.8172 |
0.8054 |
0.8153 |
0.5046 |
1100 |
6.6597 |
5.1015 |
0.7895 |
0.8066 |
0.8119 |
0.8059 |
0.8063 |
0.5505 |
1200 |
6.7172 |
5.3707 |
0.7753 |
0.7987 |
0.8068 |
0.7989 |
0.8014 |
0.5963 |
1300 |
6.6514 |
4.9368 |
0.7904 |
0.8086 |
0.8139 |
0.8051 |
0.8083 |
0.6422 |
1400 |
6.5573 |
5.0196 |
0.7882 |
0.8066 |
0.8128 |
0.8035 |
0.8091 |
0.6881 |
1500 |
6.7596 |
4.9381 |
0.7960 |
0.8120 |
0.8169 |
0.8058 |
0.8140 |
0.7339 |
1600 |
6.2686 |
4.4018 |
0.8136 |
0.8245 |
0.8268 |
0.8160 |
0.8244 |
0.7798 |
1700 |
3.4607 |
3.8397 |
0.8415 |
0.8466 |
0.8502 |
0.8345 |
0.8503 |
0.8257 |
1800 |
2.6912 |
3.7914 |
0.8415 |
0.8459 |
0.8493 |
0.8350 |
0.8488 |
0.8716 |
1900 |
2.4958 |
3.7752 |
0.8402 |
0.8450 |
0.8484 |
0.8340 |
0.8478 |
0.9174 |
2000 |
2.3413 |
3.7997 |
0.8410 |
0.8459 |
0.8490 |
0.8350 |
0.8486 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}