|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: FalCoder |
|
results: [] |
|
license: apache-2.0 |
|
language: |
|
- code |
|
thumbnail: >- |
|
https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png |
|
--- |
|
|
|
<div style="text-align:center;width:250px;height:250px;"> |
|
<img src="https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png" alt="falcoder logo""> |
|
</div> |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FalCoder |
|
**Falcon-7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. |
|
|
|
## Model description |
|
|
|
[Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) |
|
|
|
## Dataset |
|
|
|
[CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K) |
|
|
|
## Intended uses & limitations |
|
|
|
TBA |
|
|
|
## Training and evaluation data |
|
|
|
TBA |
|
|
|
### Training hyperparameters |
|
|
|
TBA |
|
|
|
### Training results |
|
|
|
TBA |
|
|
|
|
|
### Example of usage |
|
```py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer |
|
|
|
model_id = "mrm8488/falcoder-7b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") |
|
|
|
def generate( |
|
instruction, |
|
max_new_tokens=128, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
**kwargs |
|
): |
|
prompt = instruction + "\n### Solution:\n" |
|
print(prompt) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to("cuda") |
|
attention_mask = inputs["attention_mask"].to("cuda") |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
early_stopping=True |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Solution:")[1].lstrip("\n") |
|
|
|
instruction = "Design a class for representing a person in Python." |
|
print(generate(instruction)) |
|
``` |
|
|
|
|