File size: 2,401 Bytes
fddbd3a
 
 
 
 
 
 
 
b8200c0
 
fddbd3a
 
 
 
 
b8200c0
fddbd3a
 
 
 
 
 
 
b8200c0
fddbd3a
b8200c0
 
fddbd3a
b8200c0
 
fddbd3a
b8200c0
 
fddbd3a
b8200c0
fddbd3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d616e8
fddbd3a
 
06a006a
 
 
 
 
 
 
 
 
 
 
 
 
fddbd3a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- summarize_from_feedback
metrics:
- rouge
pipeline_tag: summarization
base_model: google/flan-t5-large
model-index:
- name: flan-t5-large-finetuned-openai-summarize_from_feedback
  results:
  - task:
      type: text2text-generation
      name: Sequence-to-sequence Language Modeling
    dataset:
      name: summarize_from_feedback
      type: summarize_from_feedback
      config: comparisons
      split: train
      args: comparisons
    metrics:
    - type: rouge
      value: 30.2401
      name: Rouge1
    - type: rouge
      value: 11.4916
      name: Rouge2
    - type: rouge
      value: 24.6485
      name: RougeL
    - type: rouge
      value: 26.1801
      name: RougeLSum
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-finetuned-openai-summarize_from_feedback

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the summarize_from_feedback dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3118
- Rouge1: 30.2401
- Rouge2: 11.4916
- Rougel: 24.6485
- Rougelsum: 26.1801
- Gen Len: 18.8428

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

See [Tensorboard](https://huggingface.co/mrm8488/flan-t5-large-finetuned-openai-summarize_from_feedback/tensorboard)


### Citation

```
@misc {manuel_romero_2023,
	author       = { {Manuel Romero} },
	title        = { flan-t5-large-finetuned-openai-summarize_from_feedback (Revision 51666f9) },
	year         = 2023,
	url          = { https://huggingface.co/mrm8488/flan-t5-large-finetuned-openai-summarize_from_feedback },
	doi          = { 10.57967/hf/0266 },
	publisher    = { Hugging Face }
}
```

### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2