|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2697 |
|
- loss:MatryoshkaLoss |
|
- loss:CoSENTLoss |
|
base_model: nomic-ai/modernbert-embed-base |
|
widget: |
|
- source_sentence: En un mercado de granjeros, se encuentra un hombre. |
|
sentences: |
|
- Un abogado de la CPI detenido en Libia está ahora mismo encarando un período de |
|
detención de 45 días |
|
- Un hombre está presente en un mercado donde se venden productos agrícolas directamente |
|
de los agricultores. |
|
- ¿Existe la posibilidad de que cambie de opinión si no se expresa de manera enérgica |
|
o muestra un comportamiento inapropiado? |
|
- source_sentence: Una mujer está posada en una postura con los brazos abiertos mientras |
|
otra persona le toma una fotografía. |
|
sentences: |
|
- Un hombre se encuentra parado en medio de una multitud sujetando un objeto de |
|
color blanco. |
|
- Las personas están cerca del agua. |
|
- Frente a una estatua de una vaca, hay una mujer, un niño pequeño y un bebé diminuto. |
|
- source_sentence: Un grupo de cuatro niños está observando los diferentes animales |
|
que están en el establo. |
|
sentences: |
|
- Evita apoyar todo tu peso en los brazos, ya que tus manos no están diseñadas para |
|
soportar esa presión constante. |
|
- Los niños están mirando atentamente a una oveja. |
|
- Un puma persigue a un oso grande en el bosque. |
|
- source_sentence: La gente se balancea saltando al agua mientras otros pescan en |
|
el fondo del mar. |
|
sentences: |
|
- Dos individuos observan el agua con atención. |
|
- Siempre golpeamos suavemente a nuestros hijos en la boca para mostrarles que su |
|
boca es lo que les causa dolor. |
|
- Aunque el sistema de prioridad al primero en llegar beneficia a dos participantes, |
|
no asegura definitivamente la exclusión de terceros. |
|
- source_sentence: El cordero está mirando hacia la cámara. |
|
sentences: |
|
- Manmohan en Teherán insta a NAM a tomar una posición clara sobre el conflicto |
|
en Siria |
|
- Un gato está mirando hacia la cámara también. |
|
- '"Sí, no deseo estar presente durante este testimonio", declaró tranquilamente |
|
Peterson, de 31 años, al juez cuando fue devuelto a su celda.' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on nomic-ai/modernbert-embed-base |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7498914121357008 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7531670275662775 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7468285624371191 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7482342767593612 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7419098803201045 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7450577925521013 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7262860099881795 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7304432975238186 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6973267849431932 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7069603266334332 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8673484326459211 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8767387684433159 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8665336885415594 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8751868367625472 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8568125590206718 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8702353416571491 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8485344363338887 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8617402150766132 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8193790032247387 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8419631939550043 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on nomic-ai/modernbert-embed-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the stsb_multi_es_augmented (private) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision bb0033c9f3def40c3c5b26ff0b53c74f3320d703 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Private stsb dataset |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("mrm8488/modernbert-embed-base-ft-sts-spanish-matryoshka-768-64-5e") |
|
# Run inference |
|
sentences = [ |
|
'El cordero está mirando hacia la cámara.', |
|
'Un gato está mirando hacia la cámara también.', |
|
'"Sí, no deseo estar presente durante este testimonio", declaró tranquilamente Peterson, de 31 años, al juez cuando fue devuelto a su celda.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `sts-dev-768`, `sts-dev-512`, `sts-dev-256`, `sts-dev-128`, `sts-dev-64`, `sts-test-768`, `sts-test-512`, `sts-test-256`, `sts-test-128` and `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | sts-dev-768 | sts-dev-512 | sts-dev-256 | sts-dev-128 | sts-dev-64 | sts-test-768 | sts-test-512 | sts-test-256 | sts-test-128 | sts-test-64 | |
|
|:--------------------|:------------|:------------|:------------|:------------|:-----------|:-------------|:-------------|:-------------|:-------------|:------------| |
|
| pearson_cosine | 0.7499 | 0.7468 | 0.7419 | 0.7263 | 0.6973 | 0.8673 | 0.8665 | 0.8568 | 0.8485 | 0.8194 | |
|
| **spearman_cosine** | **0.7532** | **0.7482** | **0.7451** | **0.7304** | **0.707** | **0.8767** | **0.8752** | **0.8702** | **0.8617** | **0.842** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### stsb_multi_es_augmented (private) |
|
|
|
* Size: 2,697 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 28.42 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 28.01 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.72</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------| |
|
| <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code> | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code> | <code>3.200000047683716</code> | |
|
| <code>Una chica está tocando la flauta en un parque.</code> | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code> | <code>1.286</code> | |
|
| <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### stsb_multi_es_augmented (private) |
|
|
|
* Size: 697 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 697 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 29.35 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.52 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------| |
|
| <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code> | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code> | <code>4.199999809265137</code> | |
|
| <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code> | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code> | <code>3.5</code> | |
|
| <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-64_spearman_cosine | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-128_spearman_cosine | sts-test-64_spearman_cosine | |
|
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:| |
|
| 0.5917 | 100 | 23.7709 | 22.5494 | 0.7185 | 0.7146 | 0.7055 | 0.6794 | 0.6570 | - | - | - | - | - | |
|
| 1.1834 | 200 | 22.137 | 22.7634 | 0.7449 | 0.7412 | 0.7439 | 0.7287 | 0.7027 | - | - | - | - | - | |
|
| 1.7751 | 300 | 21.5527 | 22.6985 | 0.7321 | 0.7281 | 0.7243 | 0.7063 | 0.6862 | - | - | - | - | - | |
|
| 2.3669 | 400 | 20.5745 | 24.0021 | 0.7302 | 0.7264 | 0.7221 | 0.7097 | 0.6897 | - | - | - | - | - | |
|
| 2.9586 | 500 | 20.0861 | 24.0091 | 0.7392 | 0.7361 | 0.7293 | 0.7124 | 0.6906 | - | - | - | - | - | |
|
| 3.5503 | 600 | 18.8191 | 26.9012 | 0.7502 | 0.7462 | 0.7399 | 0.7207 | 0.6960 | - | - | - | - | - | |
|
| 4.1420 | 700 | 18.3 | 29.0209 | 0.7496 | 0.7454 | 0.7432 | 0.7284 | 0.7065 | - | - | - | - | - | |
|
| 4.7337 | 800 | 17.6496 | 28.9536 | 0.7532 | 0.7482 | 0.7451 | 0.7304 | 0.7070 | - | - | - | - | - | |
|
| 5.0 | 845 | - | - | - | - | - | - | - | 0.8767 | 0.8752 | 0.8702 | 0.8617 | 0.8420 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.48.0 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |