best-model-v1 / README.md
mspoulaei's picture
roberta-sentiment
229bb56 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: best-model-v1
    results: []

best-model-v1

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6069
  • Accuracy: 0.4410
  • Precision: 0.5118
  • Recall: 0.6489
  • F1 Score: 0.5711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
1.7357 0.3911 500 0.8218 0.3192 0.2798 0.2506 0.2551
1.5848 0.7822 1000 0.7275 0.3937 0.4789 0.4157 0.4387
1.398 1.1729 1500 0.6628 0.4123 0.4885 0.5846 0.5251
1.2999 1.5639 2000 0.6264 0.4295 0.5046 0.6402 0.5626
1.2964 1.9550 2500 0.6101 0.4260 0.4991 0.6553 0.5655
1.2479 2.3457 3000 0.6069 0.4381 0.5082 0.6506 0.5695
1.267 2.7368 3500 0.6069 0.4410 0.5118 0.6489 0.5711

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0