lge_tests_prelim
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2067
- Accuracy: 0.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6254 | 0.0 |
2.6109 | 0.0064 | 100 | 2.6078 | 0.0 |
2.5713 | 0.0128 | 200 | 2.5687 | 0.0 |
2.5492 | 0.0192 | 300 | 2.5395 | 0.0 |
2.5191 | 0.0256 | 400 | 2.5052 | 0.0 |
2.4652 | 0.0320 | 500 | 2.4670 | 0.0 |
2.435 | 0.0384 | 600 | 2.4292 | 0.0 |
2.4039 | 0.0448 | 700 | 2.3940 | 0.0 |
2.3781 | 0.0512 | 800 | 2.3642 | 0.0 |
2.35 | 0.0576 | 900 | 2.3376 | 0.0 |
2.3129 | 0.0640 | 1000 | 2.3098 | 0.0 |
2.2849 | 0.0704 | 1100 | 2.2799 | 0.0 |
2.2505 | 0.0768 | 1200 | 2.2264 | 0.0 |
2.2202 | 0.0832 | 1300 | 2.1897 | 0.0 |
2.1454 | 0.0896 | 1400 | 2.1558 | 0.0 |
2.1293 | 0.0960 | 1500 | 2.1155 | 0.0 |
2.0727 | 0.1024 | 1600 | 2.0485 | 0.0 |
2.0048 | 0.1088 | 1700 | 1.9935 | 0.0 |
2.0274 | 0.1152 | 1800 | 1.9687 | 0.0 |
1.953 | 0.1216 | 1900 | 1.9447 | 0.0 |
1.8883 | 0.1280 | 2000 | 1.8772 | 0.0 |
1.8263 | 0.1344 | 2100 | 1.8623 | 0.0 |
1.7997 | 0.1408 | 2200 | 1.8072 | 0.005 |
1.7646 | 0.1472 | 2300 | 1.7725 | 0.0 |
1.7121 | 0.1536 | 2400 | 1.7096 | 0.0 |
1.6922 | 0.1600 | 2500 | 1.6917 | 0.015 |
1.6736 | 0.1664 | 2600 | 1.6496 | 0.0 |
1.6291 | 0.1728 | 2700 | 1.6183 | 0.035 |
1.5893 | 0.1792 | 2800 | 1.5810 | 0.005 |
1.5395 | 0.1856 | 2900 | 1.5429 | 0.035 |
1.5109 | 0.1920 | 3000 | 1.5153 | 0.075 |
1.4911 | 0.1984 | 3100 | 1.4899 | 0.07 |
1.4687 | 0.2048 | 3200 | 1.4783 | 0.065 |
1.4461 | 0.2112 | 3300 | 1.4396 | 0.075 |
1.3921 | 0.2176 | 3400 | 1.4007 | 0.075 |
1.3629 | 0.2240 | 3500 | 1.3684 | 0.1 |
1.3245 | 0.2304 | 3600 | 1.3432 | 0.075 |
1.3085 | 0.2368 | 3700 | 1.3058 | 0.195 |
1.3496 | 0.2432 | 3800 | 1.2990 | 0.055 |
1.2774 | 0.2496 | 3900 | 1.2640 | 0.095 |
1.2665 | 0.2560 | 4000 | 1.2677 | 0.06 |
1.1992 | 0.2625 | 4100 | 1.2062 | 0.215 |
1.2042 | 0.2689 | 4200 | 1.1900 | 0.21 |
1.1635 | 0.2753 | 4300 | 1.1518 | 0.26 |
1.1682 | 0.2817 | 4400 | 1.1399 | 0.18 |
1.1194 | 0.2881 | 4500 | 1.1299 | 0.225 |
1.1014 | 0.2945 | 4600 | 1.0991 | 0.225 |
1.0721 | 0.3009 | 4700 | 1.0832 | 0.215 |
1.052 | 0.3073 | 4800 | 1.0435 | 0.325 |
1.0626 | 0.3137 | 4900 | 1.0431 | 0.285 |
1.0336 | 0.3201 | 5000 | 1.0169 | 0.275 |
1.0364 | 0.3265 | 5100 | 1.0671 | 0.075 |
0.9757 | 0.3329 | 5200 | 0.9752 | 0.375 |
0.9877 | 0.3393 | 5300 | 0.9627 | 0.325 |
0.9792 | 0.3457 | 5400 | 0.9401 | 0.345 |
0.9266 | 0.3521 | 5500 | 0.9213 | 0.365 |
0.9113 | 0.3585 | 5600 | 0.8966 | 0.415 |
0.8876 | 0.3649 | 5700 | 0.8923 | 0.275 |
0.8558 | 0.3713 | 5800 | 0.8789 | 0.28 |
0.8659 | 0.3777 | 5900 | 0.8660 | 0.3 |
0.8328 | 0.3841 | 6000 | 0.8422 | 0.375 |
0.8317 | 0.3905 | 6100 | 0.8459 | 0.28 |
0.8277 | 0.3969 | 6200 | 0.8762 | 0.155 |
0.7851 | 0.4033 | 6300 | 0.7940 | 0.4 |
0.7875 | 0.4097 | 6400 | 0.7926 | 0.36 |
0.8502 | 0.4161 | 6500 | 0.7876 | 0.375 |
0.7762 | 0.4225 | 6600 | 0.8018 | 0.295 |
0.8015 | 0.4289 | 6700 | 0.7519 | 0.365 |
0.7489 | 0.4353 | 6800 | 0.7534 | 0.36 |
0.7517 | 0.4417 | 6900 | 0.7896 | 0.2 |
0.7989 | 0.4481 | 7000 | 0.7280 | 0.36 |
0.6945 | 0.4545 | 7100 | 0.7047 | 0.37 |
0.6574 | 0.4609 | 7200 | 0.6533 | 0.54 |
0.7302 | 0.4673 | 7300 | 0.7296 | 0.26 |
0.688 | 0.4737 | 7400 | 0.6556 | 0.395 |
0.6391 | 0.4801 | 7500 | 0.6475 | 0.415 |
0.6368 | 0.4865 | 7600 | 0.6306 | 0.355 |
0.6125 | 0.4929 | 7700 | 0.6164 | 0.395 |
0.5952 | 0.4993 | 7800 | 0.6018 | 0.42 |
0.5939 | 0.5057 | 7900 | 0.6027 | 0.365 |
0.5922 | 0.5121 | 8000 | 0.5569 | 0.545 |
0.5471 | 0.5185 | 8100 | 0.5585 | 0.38 |
0.5395 | 0.5249 | 8200 | 0.5676 | 0.42 |
0.5494 | 0.5313 | 8300 | 0.5726 | 0.345 |
0.5166 | 0.5377 | 8400 | 0.5164 | 0.49 |
0.5454 | 0.5441 | 8500 | 0.5302 | 0.455 |
0.5121 | 0.5505 | 8600 | 0.4883 | 0.54 |
0.5356 | 0.5569 | 8700 | 0.4843 | 0.515 |
0.4726 | 0.5633 | 8800 | 0.4832 | 0.465 |
0.472 | 0.5697 | 8900 | 0.5029 | 0.45 |
0.4606 | 0.5761 | 9000 | 0.4561 | 0.55 |
0.4735 | 0.5825 | 9100 | 0.4549 | 0.52 |
0.4721 | 0.5889 | 9200 | 0.4391 | 0.55 |
0.4607 | 0.5953 | 9300 | 0.4354 | 0.495 |
0.4426 | 0.6017 | 9400 | 0.4215 | 0.57 |
0.4074 | 0.6081 | 9500 | 0.4147 | 0.55 |
0.3937 | 0.6145 | 9600 | 0.3986 | 0.575 |
0.4057 | 0.6209 | 9700 | 0.3876 | 0.605 |
0.4043 | 0.6273 | 9800 | 0.3881 | 0.565 |
0.3691 | 0.6337 | 9900 | 0.3787 | 0.59 |
0.3728 | 0.6401 | 10000 | 0.3860 | 0.5 |
0.3425 | 0.6465 | 10100 | 0.3778 | 0.52 |
0.4213 | 0.6529 | 10200 | 0.4044 | 0.47 |
0.3457 | 0.6593 | 10300 | 0.3736 | 0.535 |
0.3617 | 0.6657 | 10400 | 0.3520 | 0.545 |
0.3519 | 0.6721 | 10500 | 0.3561 | 0.57 |
0.3314 | 0.6785 | 10600 | 0.3393 | 0.6 |
0.3375 | 0.6849 | 10700 | 0.3368 | 0.61 |
0.3132 | 0.6913 | 10800 | 0.3140 | 0.67 |
0.2988 | 0.6977 | 10900 | 0.3258 | 0.56 |
0.3196 | 0.7041 | 11000 | 0.3215 | 0.555 |
0.3012 | 0.7105 | 11100 | 0.2978 | 0.625 |
0.2984 | 0.7169 | 11200 | 0.3184 | 0.53 |
0.2854 | 0.7233 | 11300 | 0.2925 | 0.625 |
0.3007 | 0.7297 | 11400 | 0.3168 | 0.53 |
0.2954 | 0.7361 | 11500 | 0.2840 | 0.675 |
0.2899 | 0.7425 | 11600 | 0.2734 | 0.72 |
0.3006 | 0.7489 | 11700 | 0.2771 | 0.62 |
0.2949 | 0.7553 | 11800 | 0.2746 | 0.68 |
0.2557 | 0.7617 | 11900 | 0.2814 | 0.665 |
0.2523 | 0.7681 | 12000 | 0.2641 | 0.685 |
0.3054 | 0.7745 | 12100 | 0.2987 | 0.53 |
0.2678 | 0.7809 | 12200 | 0.2528 | 0.7 |
0.2506 | 0.7874 | 12300 | 0.2647 | 0.6 |
0.2438 | 0.7938 | 12400 | 0.2464 | 0.695 |
0.2442 | 0.8002 | 12500 | 0.2424 | 0.725 |
0.2717 | 0.8066 | 12600 | 0.2565 | 0.66 |
0.2423 | 0.8130 | 12700 | 0.2455 | 0.68 |
0.2391 | 0.8194 | 12800 | 0.2422 | 0.68 |
0.2348 | 0.8258 | 12900 | 0.2366 | 0.7 |
0.2267 | 0.8322 | 13000 | 0.2376 | 0.69 |
0.2277 | 0.8386 | 13100 | 0.2295 | 0.71 |
0.2094 | 0.8450 | 13200 | 0.2281 | 0.71 |
0.2433 | 0.8514 | 13300 | 0.2349 | 0.705 |
0.2364 | 0.8578 | 13400 | 0.2224 | 0.74 |
0.2148 | 0.8642 | 13500 | 0.2257 | 0.695 |
0.2102 | 0.8706 | 13600 | 0.2260 | 0.695 |
0.2252 | 0.8770 | 13700 | 0.2234 | 0.71 |
0.2031 | 0.8834 | 13800 | 0.2185 | 0.725 |
0.2133 | 0.8898 | 13900 | 0.2198 | 0.74 |
0.2204 | 0.8962 | 14000 | 0.2129 | 0.745 |
0.2215 | 0.9026 | 14100 | 0.2151 | 0.755 |
0.1938 | 0.9090 | 14200 | 0.2142 | 0.73 |
0.2088 | 0.9154 | 14300 | 0.2135 | 0.73 |
0.202 | 0.9218 | 14400 | 0.2138 | 0.71 |
0.202 | 0.9282 | 14500 | 0.2096 | 0.75 |
0.2003 | 0.9346 | 14600 | 0.2104 | 0.745 |
0.1985 | 0.9410 | 14700 | 0.2106 | 0.725 |
0.2097 | 0.9474 | 14800 | 0.2071 | 0.745 |
0.2058 | 0.9538 | 14900 | 0.2070 | 0.775 |
0.2163 | 0.9602 | 15000 | 0.2080 | 0.755 |
0.2123 | 0.9666 | 15100 | 0.2067 | 0.755 |
0.2151 | 0.9730 | 15200 | 0.2082 | 0.74 |
0.1888 | 0.9794 | 15300 | 0.2069 | 0.75 |
0.2026 | 0.9858 | 15400 | 0.2069 | 0.75 |
0.1918 | 0.9922 | 15500 | 0.2065 | 0.75 |
0.1987 | 0.9986 | 15600 | 0.2067 | 0.75 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.